# Plant Detection * Deep learning model [Yolox](https://github.com/Megvii-BaseDetection/YOLOX) * Dataset [Plant Village](https://www.tensorflow.org/datasets/catalog/plant_village) | class name | class name | class name | class name | | ------------------------- | --------------------- | ------------------------- | --------------------- | | Apple_scab | Apple_black_rot | Apple_cedar_apple_rust | Apple_healthy | | Background_without_leaves | Blueberry_healthy | Cherry_powdery_mildew | Cherry_healthy | | Corn_gray_leaf_spot | Corn_common_rust | Corn_northern_leaf_blight | Corn_healthy | | Grape_black_rot | Grape_black_measles | Grape_leaf_blight | Grape_healthy | | Orange_haunglongbing | Peach_bacterial_spot | Peach_healthy | Pepper_bacterial_spot | | Pepper_healthy | Potato_early_blight | Potato_healthy | Potato_late_blight | | Raspberry_healthy | Soybean_healthy | Squash_powdery_mildew | Strawberry_healthy | | Strawberry_leaf_scorch | Tomato_bacterial_spot | Tomato_early_blight | Tomato_healthy | | Tomato_late_blight | Tomato_leaf_mold | Tomato_septoria_leaf_spot | Tomato_spider_mites_two-spotted_spider_mite | | Tomato_target_spot | Tomato_mosaic_virus | Tomato_yellow_leaf_curl_virus | | * Tool - dataset format conversion [Yolo format to coco format](https://github.com/Taeyoung96/Yolo-to-COCO-format-converter/blob/master/output/train.json) ### Experiment 1 * Base on yolox-tiny model * Class number: 10 * Tomato___Bacterial_spot * Tomato___Early_blight * Tomato___healthy * Tomato___Late_blight * Tomato___Leaf_Mold * Tomato___Septoria_leaf_spot * Tomato___Spider_mites Two-spotted_spider_mite * Tomato___Target_Spot * Tomato___Tomato_mosaic_virus * Tomato___Tomato_Yellow_Leaf_Curl_Virus * Train data (90 %) (16810) | Class | number | | ----------------------- | ---- | | Tomato___Bacterial_spot | 1914 | | Tomato___Early_blight | 900 | | Tomato___Late_blight | 1580 | | Tomato___Leaf_Mold | 900 | | Tomato___Septoria_leaf_spot | 1593 | | Tomato___Spider_mites Two-spotted_spider_mite | 1508 | | Tomato___Target_Spot | 1263 | | Tomato___Tomato_Yellow_Leaf_Curl_Virus | 4821 | | Tomato___Tomato_mosaic_virus | 900 | | Tomato___healthy | 1431 | * Validate data (10 %) (1871) | Class | number | | ----------------------- | ---- | | Tomato___Bacterial_spot | 213 | | Tomato___Early_blight | 100 | | Tomato___Late_blight | 176 | | Tomato___Leaf_Mold | 100 | | Tomato___Septoria_leaf_spot | 178 | | Tomato___Spider_mites Two-spotted_spider_mite | 168 | | Tomato___Target_Spot | 141 | | Tomato___Tomato_Yellow_Leaf_Curl_Virus | 536 | | Tomato___Tomato_mosaic_virus | 100 | | Tomato___healthy | 159 | * Valid * Average forward time: 38.59 ms, Average NMS time: 1.26 ms, Average inference time: 39.85 ms * Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.992 * Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.998 * Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.998 * Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 * Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 * Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.993 * Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.996 * Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.996 * Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.996 * Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 * Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 * Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.996 * Result * Tomato___Bacterial_spot     * Tomato___Early_blight    * Tomato___healthy * Tomato___Late_blight * Tomato___Leaf_Mold  * Tomato___Septoria_leaf_spot     * Tomato___Spider_mites Two-spotted_spider_mite  * Tomato___Target_Spot    * Tomato___Tomato_mosaic_virus * Tomato___Tomato_Yellow_Leaf_Curl_Virus
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up