--- title: Robot tags: Templates, Talk description: View the slide with "Slide Mode". --- # Robot Maker <!-- Put the link to this slide here so people can follow --> slide:https://docs.google.com/presentation/d/1POpx0dMKzTCuJ2h_2FsgI1d4SMJDjbcL96PRvpiEAsM/edit?usp=drive_web&authuser=0 --- We have a special course in the school This website is about to introduce our learning process and our accomplishments --- ## The progress of the course ```flow st=>start: install Arduino e=>end: 撰寫報告 op=>operation: 接線路 op2=>operation: 撰寫程式 op3=>operation: 將過程記錄 st->op->op2->op3->e ``` --- ## The slide of the project --- https://docs.google.com/presentation/d/1POpx0dMKzTCuJ2h_2FsgI1d4SMJDjbcL96PRvpiEAsM/edit?usp=drive_web&authuser=0 --- ### The necessary hardware 1. NodeMCU ESP8266 ![](https://miro.medium.com/max/2000/1*twdqYz5uyOxTP2gOuCir5g.jpeg) 2. 超音波感測器 ![image alt]() 3. 擴充版 4. 杜邦線![](https://i.imgur.com/xIQNWvZ.jpg) --- ### The necessary software --- 1. [check here](https://www.arduino.cc/en/software) to downlaod Arduino 2. [check here](https://drive.google.com/file/d/1di1bxuuKS7947Yezd2Y-3wIYxyHi3Qyw/view?usp=drive_web&authuser=0) to downlaod ArduBlock 3. 貼上的網址 http://arduino.esp8266.com/stable/package_esp8266com_index.json 超音波測距 --- ### 原理 --- 超聲波測距是利用超聲波在空氣中傳播時間來測距 HC-SR04發射超聲波後遇到障礙反射回來的時間 我們藉由發射和接收的時間差就可得知與物體的實際距離 (2倍距離除上時間) ![link text](https://ithelp.ithome.com.tw/upload/images/20201006/20120093Li8c9gcCRB.png) #### 接線路的圖 Gnd-Gnd Vcc-V echo-D(digital) Trig-D(digital) #### 程式 ``` void setup() { } //void setup() { void loop() { const int trigPin = 5; const int echoPin = 6; long duration; int distance; pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); Serial.begin(9600); // Clears the trigPin digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance= duration*0.034/2; Serial.print("Distance: "); Serial.println(distance); delay(2000); } //} ``` * The problem ![](https://i.imgur.com/opTaLlC.png) >a function-definition is not allowed here before '{' token ### 多設一個setup (一個程式只能有一個setup) - #### The solution of problem ``` void setup() { } void loop() { const int trigPin = 5; const int echoPin = 6; long duration; int distance; pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); Serial.begin(9600); // Clears the trigPin digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance= duration*0.034/2; Serial.print("Distance: "); Serial.println(distance); delay(2000); } ``` ### time table --- ```mermaid gantt title A Gantt Diagram section Section A task :a1, 2014-01-, 30d Another task :after a1 , 20d section Another Task in sec :2014-01-12 , 12d anther task : 24d ``` --- ## My thought