### Problem1 #### 1.1-1.2 - f=3% [PASTE IMAGE HERE] erroneous bit: 63176 error rates: 3.012466% - f=10% [PASTE IMAGE HERE] erroneous bit: 210091 error rates: 10.017920% - f=30% [PASTE IMAGE HERE] erroneous bit: 629950 error rates: 30.038357% #### Problem2 ##### 2.1-2.2 - f=3% [PASTE IMAGE HERE] erroneous bit: 2702 error rates: 0.128841% ratio of correctable Error: 46.922799% - f=10% [PASTE IMAGE HERE] erroneous bit: 29019 error rates: 1.383734% ratio of correctable Error: 40.491135% - f=30% [PASTE IMAGE HERE] erroneous bit: 226002 error rates: 10.776615% ratio of correctable Error: 24.450158% #### 2.3 - In case of f=3% - problem1 error rates: 3.012466% - R3 error rates: 0.128555% The error rate decreased significantly. #### 2.4 ##### 2.4.1 f=0.3% ##### 2.4.2 The reason is that voting affected by f. If f increases, each voting bits is affected by noise. As the result, ratio of correctable error decreases. The opposite is also true. #### Problem3 ##### 3.1 ##### 3.2-3.3 - f=10%, R=5 [PASTE IMAGE HERE] erroneous bit: 9074 error rates: 0.432682% - f=10%, R=7 [PASTE IMAGE HERE] erroneous bit: 2914 error rates: 0.138950% ##### 3.4 #### Problem4 ##### 4.1-4.2 - f=3% [PASTE IMAGE HERE] erroneous bit: 31869 error rates: 1.519632% - f=10% [PASTE IMAGE HERE] erroneous bit: 111590 error rates: 5.321026% - f=30% [PASTE IMAGE HERE] erroneous bit: 358403 error rates: 17.089987% ##### 4.3