# pomelo-single ###### tags: `紀錄` categories 6 tain 2603 test 530 ## fig explanation b Training accurarcy g Validation accurarcy r Training loss y Validation loss ## Effectient B0 <mark>看起來over fitting</mark> batch size 32 epoch 90 Loss 3.396 Acc 0.564 :::warning validation_split=0.2 -> 會over fitting 所以改為 x_train, x_valid, y_train, y_valid = train_test_split(x_train , y_train , test_size=0.2, shuffle= True) ::: --- ## EfficientNet B0 <mark>ing</mark> Loss 0.285 Accc 0.930 ## DenseNet 121  Loss 0.645 Accc 0.781
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up