# 2021/04/27 Agricultural project ###### tags: `Agricultural project` ## Leaf detection ### model yolo_v2 ### Data Trainig: 221 testing: 139 ### 目前實驗概況 目前loss最低約為1.97左右 ||原圖|預測後圖片| |--|--|--| |1|![](https://i.imgur.com/G0MGZHC.jpg =300x400)|![](https://i.imgur.com/OyHRTaF.jpg =300x400)| |2|![](https://i.imgur.com/xA2YX7o.jpg =300x400)|![](https://i.imgur.com/cVpVIbK.jpg =300x400)| |3|![](https://i.imgur.com/NuedsK8.jpg =300x400)|![](https://i.imgur.com/BeUmzA4.jpg =300x400)| |4|![](https://i.imgur.com/q00LoLu.jpg =300x400)|![](https://i.imgur.com/IfeK9zL.jpg =300x400)| |5|![](https://i.imgur.com/fO0ZoS4.jpg =300x400)|![](https://i.imgur.com/BnHWjos.jpg =300x400)| 上表為目前資料訓練後的預測結果 第一列為最理想之預測結果,第二列右下的box中出現重複的現象,第三與第四列則是將樹幹、草地等其他材質判斷為葉子,第五列為不佳的預測結果 ### 問題與解決方法 1.重複框(上表2列) : 加入IOU判斷,若有重複框的狀況則刪除較小者 2.框到其他材質(上表3、4列) : 將樹幹、草地、其他雜草框做負樣本訓練 3.預測不佳(上表5列) : 增加訓練資料並修改訓練參數再做測試 --- ## 網頁 撰寫網頁用的mask功能,能將輸入的圖片依照mask去背 |原圖|結果| |--|--| |![](https://i.imgur.com/SWVQpXq.jpg)|![](https://i.imgur.com/3gZLW3q.jpg)| --- ## APP ### iOS #### Step.1 初始頁面 ![](https://i.imgur.com/aX01kOE.png) #### Step.2 按下選取圖片選擇拍照或相簿照片 ![](https://i.imgur.com/eve0UpM.png) #### Stwp.3 拍攝照片(對準正中間) ![](https://i.imgur.com/c3JmcN5.png) #### Step.4 自動裁切並顯示辨識結果(固定位置無法調整) ![](https://i.imgur.com/wbIasfO.png) #### Bouns:左上角選單頁面 ![](https://i.imgur.com/QybiZRx.png) --- ### Android #### Step 1. 初始畫面 ![1](https://i.imgur.com/Pc29J1H.jpg =330x) #### Step 2. 選擇照片 ![1-1](https://i.imgur.com/Z2zSLp6.jpg =330x) #### Step 3. 裁切相片 ![](https://i.imgur.com/e9Ar2ni.png) #### Step 4. 上傳相片至伺服器 ![3-1](https://i.imgur.com/seQTxPL.jpg =330x) #### Step 5. 查看辨識結果 ![4](https://i.imgur.com/Ndp4JDu.jpg =330x) #### 用藥建議 ![](https://i.imgur.com/fDhprwA.png) #### 諮詢專線 ![](https://i.imgur.com/QOCDCC5.png) --- ## Plant Pathology 2021 ## Dataset Total 18632 iamges, 12 classes All original labels in `train.csv` : | Label | Count | | ------------------------------- | ----- | | scab | 4826 | | healthy | 4626 | | frog_eye_leaf_spot | 3181 | | rust | 1860 | | complex | 1602 | | powdery_mildew | 1184 | | scab frog_eye_leaf_spot | 686 | | scab frog_eye_leaf_spot complex | 200 | | frog_eye_leaf_spot complex | 165 | | rust frog_eye_leaf_spot | 120 | | rust complex | 97 | | powdery_mildew complex | 87 | ![](https://i.imgur.com/knT8mMi.png) ### Labels There are only 4 diseases and ``complex``, ``healthy`` in this dataset. ``complex`` means that the disease is too complicated to be recognized > Unhealthy leaves with too many diseases to classify visually will have the complex class, and may also have a subset of the diseases identified. | Label | Count | | ------------------------------- | ----- | | healthy | 4624 | | scab | 5712 | | frog_eye_leaf_spot | 4352 | | complex | 2151 | | rust | 2077 | | powdery_mildew | 1271 | ## Experiment ``` training data: 14905 testing data: 3727 epoch: 80 batch_size: 32 ``` #### 1. Single-label method + Single-label dataset * Use Label Powerset to define labels. * Contain 12 labels in full dataset. * ACC : 0.8026 #### 2. Multi-label method + Single-label dataset * Same labels rule as method 1 * Only change model into multi-label mode. * ACC : 0.8133 #### 3. Multi-label method + Mingle-label dataset * 6 labels (4 diseases + complex and healthy) * scab frog_eye_leaf_spot complex is seen to 3 labels. * ACC : 0.8484 --- ## 硬體 與廠商討論需要的設備