# Scale Match for Tiny Person Detection
###### tags: `Paper reading` `2020`
## Paper Link
#### [Click here](https://arxiv.org/pdf/1912.10664.pdf)
---
## Abstract & Introduction
* Tiny persons `less than 20 pixels` in large-scale images remains not well investigated
* feature representation while the massive and complex backgrounds aggregate the risk of false alarms
* To detect the tiny persons, we propose a simple yet effective approach, named Scale Match
* **Main contributions**
* propose the Scale Match approach
* improves the detection performance over the state-of-the-art detector (FPN) with a significant margin (5%).
---
## Tiny Person Benchmark
### Absolute size and Relative size

* $G_{ij} = (x_{ij} , y_{ij} , w_{ij} , h_{ij} )$ = $j$-th object’s bounding box of $i$-th image $I_i$ in dataset
* $x_{ij}$ , $y_{ij}$ = coordinate of the left-top point
* $w_{ij}$ , $h_{ij}$ are the width and height of the bounding box
* $W_i$, $H_i$ denote the width and height of $I_i$

作者將 Tiny Person和COCO、Wider Face和CityPersons數據集進行對比,具體數據如Table 1,可見Tiny Person的小目標是真的相對很小
### Benchmark description
#### Dataset Collection
* Collected from Internet
1. Videos with a high resolution are collected from different websites
2. Sample images from video every 50 frames.
3. Delete images with a certain repetition.
4. Annotate 72651 objects with bounding boxes by hand
#### Dataset Properties
* The persons in TinyPerson are quite tiny compared with other representative datasets
* The aspect ratio of persons in TinyPerson has a large variance
> Since the various poses and viewpoints of persons in TinyPerson, it brings more complex diversity of the persons, and **leads to the detection more difficult**
* Mainly focus on person around seaside
* There are many images with dense objects (more than 200 persons per image) in TinyPerson
#### Annotation rules
* sea person
* Persons on boat
* Persons lying in the water
* Persons with more than half body in water
* earth person
* others
* ignore
* Crowds `我們可以識別為人。 但是當用標準矩形標記時,人群很難一一分開`
* Ambiguous regions `難以明確區分是否有一個或多個人`
* Reflections in Water `有些物體很難被識別為人類,我們直接將它們標記為“不確定”`
#### Evaluation
* Use both AP (average precision) and [MR (miss rate)](https://www.twblogs.net/a/5b7f5d252b717767c6af31c8) for performance evaluation
$MR = FRN = {FN\over P} = {FN\over FN+TP} = 1-TPR$
* Size range is divided into 3 intervals :
* tiny[2,20]
* tiny1[2,8]
* tiny2[8,12]
* tiny3[12,20]
* small[20,32]
* all[2,inf]
* IOU threshold = 0.5
* IOD is for ignored regions for evaluation.`change IOU to IOD`
### Dataset Challenges
#### Tiny absolute size
To quantify the effect of absolute size reduction on performance
1. Down-sample CityPersons by $4\times4$ to construct tiny CityPersons `objects’ absolute size is same as that of TinyPerson`
2. Train a detector for CityPersons and tiny Citypersons, respectively

> Table 4 prove that tiny objects’ size really brings a great challenge in detection
The performance drops significantly while the object’s size becomes tiny.
#### Tiny relative size
absolute size相同,但TinyPerson是遠景。所以TinyPerson的relative size小於CityPersons 。
To better quantify the effect of the tiny relative size
1. obtain two new datasets $3\times3$ tiny CityPersons and $3\times3$ TinyPerson `by directly 3*3 up-sampling tiny CityPersons and TinyPerson, respectively.`

---
## Method

* $X$ = Dataset
* $s$ = Objects’ size
* $P_{size}(s;X)$ = probability density function of objects’ size $s$ in $X$
* $T$ = scale transform = Scale Match
* $E$ = extra dataset = MS COCO
* $D$ = targeted dataset = TinyPerson
### Scale Match
#### Architecture

#### Steps of Scale Match
假設 $G_{ij}=(x_{ij},y_{ij},w_{ij},h_{ij})$ 為Dataset $E$中第 $i$ 圖中第 $j$ object
1. $P_{size}(s;X)$ 採樣成 $\hat{s}$ 尺寸
2. 計算縮放比例 $c$ = $\hat{s}\over AS(G_{ij})$
3. $Resize$ $Object$ $with$ $scale$ $ratio$ $c$
$\hat G_{ij}\leftarrow$ $(x_{ij}\times c$ , $y_{ij}\times c$ , $w_{ij}\times c$ , $h_{ij}\times c$);
#### Estimate $P_{size}(s;X)$
#### Algorithm


### Monotone Scale Match (MSM) for Detection
---
## Loss Function
---
## Experiments
