# Eff+CBAM Survey 2019-2021 ###### tags: `Survey` ## Multi-Classification Study of the Tuberculosis with 3D CBAM-ResNet and EfficientNet `醫療` `CLEF 2021` - Data : ImageCLEF 2021 Tuberculosis – CT report challenge `provided as 3D dataset` - class : 5 - train : 917 - test : 421 - Each CT-image can correspond to only one TB type at a time :question:Multi-Classification? - multi-classification task - CBAM-Resnet and EfficientNet B5 as backbone - CBAM use for each block of the Resnet - augmentation - 亮度 - 剪切 - 縮放 - 翻轉 - Results  ``` kappa -> Cohen’s Kappa 一種評斷標準 ``` ## C + EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet `醫療` `Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena` - Data - [The first dataset](https://github.com/UCSD-AI4H/COVID-CT) - 2 classes - 349 COVID-19 images - 396 non-Covid images - [The second dataset ](https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset) - 2 classes - 1601 COVID-19 images - 1626 non-Covid images - 20% use for test -  - 利用 EfficientNet + CBAM 組成 Hybrid model - 利用 Hybrid model 提出 feature - 將 feature 送入 Principial component analysis (PCA) `一種統計技術,目的在降維` - 最後用 SVM 分類 - Results  ## Efficient Supervision Net: Polyp Segmentation Using EfficientNet and Attention Unit `醫療` `MediaEval’20` - Data : Medico polyp challenge dataset - 1000 segmented images - randomly split 70% for training and 30% for validation  - Inspired by the [multilevel hyper vision Net](https://arxiv.org/abs/1908.03339) and had properties of an encoder, decoder structure with supervision layers. - Encoder block : Efficientnet B4 - Decoder block : Dense block + Concurrent Spatial and Channel Attention (CSCA) block - Augmentation - HorizontalFlip - VerticalFlip - Blur (limit = 3) - Rotate (-10, 10) - Results  ## Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism `農業` `Agriculture 2021` - 菇類病蟲害辨識 - Constructed the Bilinear convolutional neural networks (B-CNN) with attention mechanism model - Data : self-built Amanita dataset - 3219 Amanita images - train : 80% - test : 20% - class : 7 - Augmentation - random rotation - translation - cutting  - Bilinear convolutional neural networks - Efficientnet B4 - CBAM - Results   --- https://scholar.google.com/scholar?q=efficientnet+cbam+&hl=zh-TW&as_sdt=0%2C5&as_ylo=2019&as_yhi=
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up