###### tags: `leetcode` `easy` `Array` `Hash Table` `Sorting` `Counting` # [1365. How Many Numbers Are Smaller Than the Current Number](https://leetcode.com/problems/how-many-numbers-are-smaller-than-the-current-number/) ## Description Given the array `nums`, for each `nums[i]` find out how many numbers in the array are smaller than it. That is, for each `nums[i]` you have to count the number of valid `j's` such that `j != i` **and** `nums[j] < nums[i]`. Return the answer in an array. ## Examples ### Example 1: **Input**: nums = [8,1,2,2,3] **Output**: [4,0,1,1,3] **Explanation**: For nums[0]=8 there exist four smaller numbers than it (1, 2, 2 and 3). For nums[1]=1 does not exist any smaller number than it. For nums[2]=2 there exist one smaller number than it (1). For nums[3]=2 there exist one smaller number than it (1). For nums[4]=3 there exist three smaller numbers than it (1, 2 and 2). ### Example 2: **Input**: nums = [6,5,4,8] **Output**: [2,1,0,3] ### Example 3: **Input**: nums = [7,7,7,7] **Output**: [0,0,0,0] ## Constraints: - $2 \leq nums.length \leq 500$ - $0 \leq nums[i] \leq 100$ ## Code ```c= /** * Note: The returned array must be malloced, assume caller calls free(). */ int* smallerNumbersThanCurrent(int* nums, int numsSize, int* returnSize) { int* returnNums = calloc(numsSize, sizeof(int)); int i, count[101] = { 0 }, all[101] = { 0 }; for (i = 0; i < numsSize; i++) count[nums[i]]++; all[1] = count[0]; for (i = 1; i <= 100; i++) all[i] = count[i - 1] + all[i - 1]; for (i = 0; i < numsSize; i++) returnNums[i] = all[nums[i]]; *returnSize = numsSize; return returnNums; } ``` ## Complexity |Space |Time | |- |- | |$O(N)$|$O(N)$| ## Result - Runtime : 18 ms, 89.38% - Memory usage : 6.7 MB, 94.14%