###### tags: `leetcode` `medium` `Array` `Dynamic Programming` `Matrix` # [931. Minimum Falling Path Sum](https://leetcode.com/problems/minimum-falling-path-sum/description/) ## Description Given an `n x n` array of integers `matrix`, return *the **minimum sum** of any **falling path** through* `matrix`. A **falling path** starts at any element in the first row and chooses the element in the next row that is either directly below or diagonally left/right. Specifically, the next element from position` (row, col)` will be `(row + 1, col - 1)`,` (row + 1, col)`, or` (row + 1, col + 1)`. ## Examples ### Example 1: ![failing1-grid](https://assets.leetcode.com/uploads/2021/11/03/failing1-grid.jpg) **Input**: matrix =` [[2,1,3],[6,5,4],[7,8,9]]` **Output**: 13 **Explanation**: There are two falling paths with a minimum sum as shown. ### Example 2: ![failing2-grid](https://assets.leetcode.com/uploads/2021/11/03/failing2-grid.jpg) **Input**: matrix =` [[-19,57],[-40,-5]]` **Output**: -59 **Explanation**: The falling path with a minimum sum is shown. ## Constraints: - $n == matrix.length == matrix[i].length$ - $1 \leq n \leq 100$ - $-100 \leq matrix[i][j] \leq 100$ ## Code ```c= int minFallingPathSum(int** matrix, int matrixSize, int* matrixColSize){ int **localMin = (int**)malloc(matrixSize * sizeof(int*)); int left, mid, right, min, row, col; for(int i = 0 ; i < matrixSize ; i++) localMin[i] = (int*)malloc(sizeof(int) * matrixSize); for(row = 0 ; row < matrixSize ; row++){ for(col = 0 ; col < matrixSize ; col++){ if(row == 0) { localMin[row][col] = matrix[row][col]; continue; } left = (col-1 < 0) ? INT_MAX : localMin[row - 1][col - 1]; mid = localMin[row - 1][col]; right = (col+1 >= matrixSize) ? INT_MAX : localMin[row - 1][col + 1]; min = (left < mid) ? left : mid; min = (min < right) ? min : right; localMin[row][col] = matrix[row][col] + min; } } for(row = matrixSize - 1, col = 0, min = INT_MAX ; col < matrixSize ; col++) min = (min < localMin[row][col]) ? min : localMin[row][col]; return min; } ``` ## Complexity |Space |Time | |- |- | |$O(N)$|$O(N)$| ## Result - Runtime : 15 ms, 98.95% - Memory : 6.7 MB, 27.37%