###### tags: `leetcode` `easy` `Stack` `Design` `Queue` # [232. Implement Queue using Stacks](https://leetcode.com/problems/implement-queue-using-stacks/description/) ## Description Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (`push`, `peek`, `pop`, and `empty`). Implement the `MyQueue` class: - `void push(int x)` Pushes element x to the back of the queue. - `int pop()` Removes the element from the front of the queue and returns it. - `int peek()` Returns the element at the front of the queue. - `boolean empty()` Returns `true` if the queue is empty, `false` otherwise. **Notes**: - You must use only standard operations of a stack, which means only `push to top`, `peek/pop from top`, `size`, and `is empty` operations are valid. - Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations. ## Examples ### Example1 **Input** ["MyQueue", "push", "push", "peek", "pop", "empty"] [[], [1], [2], [], [], []] **Output** [null, null, null, 1, 1, false] **Explanation** MyQueue myQueue = new MyQueue(); myQueue.push(1); // queue is: [1] myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue) myQueue.peek(); // return 1 myQueue.pop(); // return 1, queue is [2] myQueue.empty(); // return false ## Constraints: - $1 \leq x \leq 9$ - At most `100` calls will be made to `push`, `pop`, `peek`, and `empty`. - All the calls to `pop` and `peek` are valid. **Follow-up**: Can you implement the queue such that each operation is [amortized](https://en.wikipedia.org/wiki/Amortized_analysis) `O(1)` time complexity? In other words, performing `n` operations will take overall `O(n)` time even if one of those operations may take longer. ## Code ```c= typedef struct node { int data; struct node* next; } NODE; typedef struct { NODE *head, *tail; } MyQueue; MyQueue* myQueueCreate() { struct MyQueue* Q = calloc(1, sizeof(MyQueue)); return Q; } void myQueuePush(MyQueue* obj, int x) { NODE* tmp = calloc(1, sizeof(NODE)); tmp->data = x; tmp->next = NULL; if (!obj->head) obj->head = tmp; if (!obj->tail) obj->tail = tmp; else { obj->tail->next = tmp; obj->tail = obj->tail->next; } } int myQueuePop(MyQueue* obj) { NODE* tmp = obj->head; if (!tmp) return NULL; int data = tmp->data; if (obj->head == obj->tail) { free(tmp); obj->head = NULL; obj->tail = NULL; } else { obj->head = tmp->next; free(tmp); } return data; } int myQueuePeek(MyQueue* obj) { return obj->head->data; } bool myQueueEmpty(MyQueue* obj) { return obj->head == NULL; } void myQueueFree(MyQueue* obj) { NODE *pre, *tmp = obj->head; while (tmp != NULL) { pre = tmp; tmp = tmp->next; free(pre); } } ``` ## Complexity |Space |Time | |- |- | |$O(N)$|$O(1)$| ## Result - Runtime: 0 ms, 100% - Memory: 5.9 MB, 59.26%