# Hamiltonian density Lagrangian density $\mathscr{L}(A, \partial^{\mu}A, x^{\mu})$ in absence of any source $$ \begin{equation} \begin{split} \mathscr{L} &= -\frac{1}{4\mu_{0}} F^{\mu\nu}F_{\mu\nu} \\ &= -\frac{1}{4\mu_{0}} ( \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} ) ( \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} ) \\ &= -\frac{1}{2\mu_{0}} \eta^{\mu\mu^{\prime}}\eta^{\nu\nu^{\prime}} ( \partial_{\mu}A_{\nu} \partial_{\mu^{\prime}}A_{\nu^{\prime}} - \partial_{\mu}A_{\nu} \partial_{\nu^{\prime}}A_{\mu^{\prime}} ) \\ \end{split} \end{equation} $$ And the Euler-Lagrangian equation becomes $$ \begin{split} \frac{ \partial \mathscr{L} }{ \partial (\partial^{\mu}A^{\mu}) } &= \frac{\partial }{ \partial (\partial^{\mu}A^{\mu}) } \left[ -\frac{1}{2\mu_{0}} \eta_{\mu\mu^{\prime}}\eta_{\nu\nu^{\prime}} ( \partial^{\mu}A^{\nu} \partial^{\mu^{\prime}}A^{\nu^{\prime}} - \partial^{\mu}A^{\nu} \partial^{\nu^{\prime}}A^{\mu^{\prime}} ) \right] \\ &= -\frac{1}{2\mu_{0}} \frac{\partial }{ \partial (\partial^{\mu}A^{\mu}) } \left[ \eta_{\mu\mu^{\prime}}\eta_{\nu\nu^{\prime}} ( \partial^{\mu}A^{\nu} \partial^{\mu^{\prime}}A^{\nu^{\prime}} - \partial^{\mu}A^{\nu} \partial^{\nu^{\prime}}A^{\mu^{\prime}} ) \right] \\ &= -\frac{1}{2\mu_{0}} \frac{\partial }{ \partial (\partial^{\mu}A^{\mu}) } \left[ \eta_{\mu\mu^{\prime}}\eta_{\nu\nu^{\prime}} ( \partial^{\mu^{\prime}}A^{\nu^{\prime}} - \partial^{\nu^{\prime}}A^{\mu^{\prime}} ) \right] \\ \end{split} $$ Define the Legendre transform $$ \pi^{0} = \frac{\partial \mathscr{L}}{\partial (\partial_{t} A_{0})} = \frac{\partial \mathscr{L}}{\partial \dot{A_{0}}} =0 $$ $$ \pi^{i} = \frac{ \partial \mathscr{L} }{ \partial (\partial_{t}A_{i}) } = \frac{\partial \mathscr{L}}{\partial \dot{A_{i}}} = -\frac{1}{\mu_{0}}F^{0i} = -\frac{1}{\mu_{0}}(-\frac{1}{c}E^{i}) = \frac{1}{\mu_{0}c}E^{i} $$ Therefore the Hamiltonian density $\mathscr{H}(A^{i}, \Pi^{\mu}, \partial^{i}\phi, x^{\mu})$ is $$ \begin{split} \mathscr{H} &=\Pi^{\mu} \dot{\phi}_{\mu} - \mathscr{L}\\ &=\Pi^{i}\dot{A_{i}} - \mathscr{L} \end{split} $$ Solve the first term $$ \begin{split} \Pi^{i}\dot{A_{i}} &=\frac{\partial\mathscr{L}}{\partial (\partial_{0}A_{0})} (\partial_{t}A_{\nu})\\ &=(-\frac{1}{\mu_{0}}F^{0\nu}) (F_{0\nu}+\partial_{\nu}A_{0})\\ &=-\frac{1}{\mu_{0}}F^{0\nu}F_{0\nu} -\frac{1}{\mu_{0}}F^{0\nu}\partial_{\nu}A_{0}\\ &=-\frac{1}{\mu_{0}}(\frac{1}{c}E^{\nu})(\frac{1}{c}E_{\nu}) -\frac{1}{\mu_{0}c}E^{i}(\vec{\nabla}\frac{\phi}{c})\\ \end{split} $$ The second term has derived above $$ \begin{split} \mathscr{L} &=-\frac{1}{4\mu_{0}}F^{\mu\nu}F_{\mu\nu}\\ &=\frac{1}{2}(B^{2}-E^{2})\\ \end{split} $$ Then the Hamiltonain density (source free) becomes $$ \mathscr{H}=\frac{1}{2}(E^{2}+B^{2}) $$