先看這個基本排版可以左右對照 https://hackmd.io/features-tw?both 常見latex符號 https://en.wikipedia.org/wiki/Wikipedia:LaTeX_symbols https://en.wikibooks.org/wiki/LaTeX/Mathematics 1. Given $A=\left\{1,2,3\right\}$, is $\emptyset\subset A$? - Yes. - If $E\subset F$ then every element of $E$ is in $F$. Since no element is in $\emptyset$, $\emptyset\subset A$ is trivially true. - If $E\subset F$ then $E\in 2^F$, where $2^F=\left\{\emptyset,\left\{1\right\},\left\{2\right\},\left\{3\right\},\left\{1,2\right\},\left\{2,3\right\},\left\{1,3\right\},A\right\}$ is the power set of $A$. 2. $\emptyset\in A$ when $A\neq\emptyset$. - Yes. - For example, if $A=\left\{1,2,3\right\}$ then $\emptyset\notin A$. But if $A=\left\{\emptyset,1,2,3\right\}$ then $\emptyset\in A$. 3. $A\subseteq\emptyset$ when $A\neq\emptyset$. - No. - By 1. The power set of $\emptyset$ is $\left\{\emptyset\right\}$. So $A\subseteq\emptyset$ only if $A=\emptyset$. 4. $\left\{\emptyset\right\}\subset A$ when $A\neq\emptyset$. - Yes. - For example, if $\left\{\left\{\emptyset\right\},1,2,3\right\}$ 5. $A\subset\emptyset$. - No. - Always false. The power set of $\emptyset$ is $\left\{\emptyset\right\}$. But $A\neq\emptyset$. NOTE: - $\emptyset\subset A$ when $A\neq\emptyset$ 4. original answer - No. The power set of $A$ contains $\emptyset$ so $\emptyset\subset A$ as in 1. But not $\left\{\emptyset\right\}\subset A$. - No. $\emptyset\in\left\{\emptyset\right\}$ but $\emptyset$ may not be in $A$ as in 2. $$\left( 括號裏面的字 \right)$$ $$\left[ 括號裏面的字 \right]$$ $$\left< 括號裏面的字 \right>$$ $$\left\{ 括號裏面的字 \right\}$$ 注意{跟}前面的\ , 因爲{跟}是保留符號, 所以要加\ 分數: $$\frac{分子}{分母}$$