# Neural Network
---
1.(x1,x2,x3) -> Perceptron -> output
2.Input: x1,x2,x3
3.Weights were introduced as w1, w2, ..., real numbers expressing the importance of the respective inputs to the output.
4.output=0 when sum(wjxj)<=threshold,
output=1 when sum(wjxj)>threshold
* Perceptron: 感知器
* 感知器的輸入為x1, x2, x3
* 感知器的輸入加上權重代表每個輸入的重要性(影響力)
* output = 0 or 1
---
[reference 1](http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons)