# Neural Network --- 1.(x1,x2,x3) -> Perceptron -> output 2.Input: x1,x2,x3 3.Weights were introduced as w1, w2, ..., real numbers expressing the importance of the respective inputs to the output. 4.output=0 when sum(wjxj)<=threshold, output=1 when sum(wjxj)>threshold * Perceptron: 感知器 * 感知器的輸入為x1, x2, x3 * 感知器的輸入加上權重代表每個輸入的重要性(影響力) * output = 0 or 1 --- [reference 1](http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons)