# 研究所 線代 ## ==SVD== ![image](https://hackmd.io/_uploads/rJQSRinOyx.png) ![image](https://hackmd.io/_uploads/HyhrAi3_1x.png) ![image](https://hackmd.io/_uploads/S1qLRihOJg.png) ![image](https://hackmd.io/_uploads/SkEvRondke.png) ## ==ker(AHA)=ker(A)== ![image](https://hackmd.io/_uploads/Sy117Kf4Jx.png) ## ==rank(AHA)=rank(A)== ![image](https://hackmd.io/_uploads/Sy117Kf4Jx.png) ## ==A、B相似,rank(A)=rank(B)== ![image](https://hackmd.io/_uploads/Sy117Kf4Jx.png) ## ==A B克逆 => AB~BA== ![image](https://hackmd.io/_uploads/rJ1ZNborJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/rktJPHU8kl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==simultaneously diagonalizable== ![image](https://hackmd.io/_uploads/Hk7EnmHL1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==各類矩陣性質== ![image](https://hackmd.io/_uploads/SJH9CN8UJe.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/rkjh77HU1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/rkjXfmSIJe.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/S1ti8nzIJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HJtJP3fLJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/rJBYvhM8yl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/r1qjD2MI1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==對稱矩陣性質== ![image](https://hackmd.io/_uploads/HkXIL2GL1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==伴隨算子== ![image](https://hackmd.io/_uploads/Hk4yu2fUJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正規矩陣的性質== ![image](https://hackmd.io/_uploads/Bkyz_nGUke.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正定矩陣的性質== ![image](https://hackmd.io/_uploads/r1AQu2fLJg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正半定矩陣的性質== ![image](https://hackmd.io/_uploads/HyQHO2fLyg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==單式對角化條件== ![image](https://hackmd.io/_uploads/H1E8u3MUJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正交對角化條件== ![image](https://hackmd.io/_uploads/rkcuOnMLkx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==AT * A 性質== ![image](https://hackmd.io/_uploads/ByjYdhfLJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正定矩陣分解== ![image](https://hackmd.io/_uploads/HJv2u2zLyg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正半定矩陣分解== ![image](https://hackmd.io/_uploads/B1CA_2zL1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==判斷正定、正半定== ![image](https://hackmd.io/_uploads/r1U-YnMIye.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==要能正交對角化才能光譜分解== ![image](https://hackmd.io/_uploads/BJvVt2zU1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==任何矩陣都能QR、SVD分解== ![image](https://hackmd.io/_uploads/BkhvthMI1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==快速求eigen value與做對角化== ![image](https://hackmd.io/_uploads/Bkv5MwzLkx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/H143MPM8yx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HkBRGwfIyl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==cholesky分解== :::danger 1. 要是方陣 2. 要是對稱矩陣 3. 要是正定矩陣 ::: ![image](https://hackmd.io/_uploads/S1xbinzI1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/S1doHUMUkl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/H13-8LM8yx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HyD7UUM8yx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==相異eigen value對應的eigen vactor獨立== :::info 若A是正規矩陣,則保證獨立且orthogonal ::: ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==只有實數對稱矩陣才可正交對角化== ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==LU== ![image](https://hackmd.io/_uploads/B1_KbnfE1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/BJPs-hMEkx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==manimal solution== ![image](https://hackmd.io/_uploads/BkrAjrhBye.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/S16yhHhrJg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/rJqxhr3HJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==orthogonal complement== 正交補空間 ![image](https://hackmd.io/_uploads/H1lGVg3HJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/B1Qarl3Hke.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正交投影函數性質== :::danger 對於所有向量 v屬於V,必存在唯一 (v1 屬於 S) 且 (v2 屬於 S perp) 滿足 v = v1+v2 ::: ![image](https://hackmd.io/_uploads/Sk5xtH3Skl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/BJq3uHhSJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/Sk3FqBnrJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==空間直和== ![image](https://hackmd.io/_uploads/SyZSoehBye.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/SkpWnehrkg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==行空間和空間互換== ![image](https://hackmd.io/_uploads/BJe4_b2Ske.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==獨立子空間== ![image](https://hackmd.io/_uploads/HJufqxhSkg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正定、正半定等矩陣定義== ![image](https://hackmd.io/_uploads/SyL81ghN1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==rank判斷解的個數== ![image](https://hackmd.io/_uploads/B10rH7TE1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==相似det tr相同的證明== ![image](https://hackmd.io/_uploads/H1TaXWoHJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==for all等價== :::danger for all x => 對於所有正整數 exist x => 存在1正整數 p(x) =>為基數 q(x) =>維偶數 ::: ![image](https://hackmd.io/_uploads/S1vI5JSB1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) # ==線性轉換== :::danger 線性轉換要滿足 1. ![image](https://hackmd.io/_uploads/ry8DQafrJl.png) 2. ![image](https://hackmd.io/_uploads/Sy9um6Grkg.png) ::: :::danger 1. 線性算子的矩陣表示法是方陣 2. T:v1->v2 ,dim(v1)=n,dim(v2)=m,***T的矩陣表示法是m*n** ::: ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==找A== ![image](https://hackmd.io/_uploads/rykE76GHye.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==旋轉矩陣== ![image](https://hackmd.io/_uploads/B1SBEpfr1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==線性轉換的矩陣表示法== ![image](https://hackmd.io/_uploads/SkqADcmByx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/B1y4v57Hyg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==換底== ![image](https://hackmd.io/_uploads/S1nCVi7H1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/H1P64iQryx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==換底重要題目== ![image](https://hackmd.io/_uploads/S1JudoXr1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HJrKds7B1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/BJAt_o7S1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HyI6usmB1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HyIxtiQB1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==核集 值域== ![image](https://hackmd.io/_uploads/HyPPa1NHyg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==求值域== ![image](https://hackmd.io/_uploads/BkMsnJVH1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==求核集== :::danger T(x,y)對應到0 ::: ![image](https://hackmd.io/_uploads/ryKhny4Hyl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/H1EThkNBke.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/ByBC21ESyl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==維度定理== ![image](https://hackmd.io/_uploads/BJFF01EHJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/SJZfkxEHJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/ByRz1x4r1e.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==injection bijection surjection== ![image](https://hackmd.io/_uploads/B1FAWgEB1e.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/B18GGx4Hye.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/S14zXeVrJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==維度相同時只要一對一或印成其中一個成立,另一個就會自動成立== ![image](https://hackmd.io/_uploads/Hk6Y7eNSJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==任何線性轉換保持相依性== ![image](https://hackmd.io/_uploads/S1asExVSye.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==一對一保持獨立== ![image](https://hackmd.io/_uploads/HkjQUx4rJl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/SksSUlNr1g.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==onto保持生成== ![image](https://hackmd.io/_uploads/HytrDe4B1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/HkMDwl4Byx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==有解無解與rank的關西== ![image](https://hackmd.io/_uploads/r1RTDZNH1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/r1_26eEHke.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/BJUC6l4ryx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) # ==idempotent matrix== ![image](https://hackmd.io/_uploads/HkbPKVVB1e.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/BkXD0NVHJx.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/Byn2RENBkl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==sylvester 2 law== ![image](https://hackmd.io/_uploads/BkiB0VNr1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## AHA 與 A的關西 ![image](https://hackmd.io/_uploads/H1lDgSVB1x.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/BykClBNHke.png) ![image](https://hackmd.io/_uploads/H1lDgSVB1x.png) # ==最小平方解== :::danger AT*A*X=AT*B 定有解 1. 當A行獨立 => AT*A可逆 => 唯一解 2. 當A行不獨立 => 無限多解 ::: ![image](https://hackmd.io/_uploads/HyAkNW4HJl.png) ![image](https://hackmd.io/_uploads/SJ_eVWNHyg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==正交投影== :::danger 要先確定basis是正交的 => 作正交化 ::: ![image](https://hackmd.io/_uploads/Hyw9SNErkg.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ![image](https://hackmd.io/_uploads/H1pamHVHyl.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png) ## ==求回歸線== ![image](https://hackmd.io/_uploads/HktBVBEH1l.png) ![image](https://hackmd.io/_uploads/Skbwyg241x.png)