Convex functions are continuous. === ###### tags: `Mathematics` `Convex Function` `Continuous Function` A function $f:\mathbb{R}\to \mathbb{R}$ is **convex** if for each $\lambda\in [0,1]$, $$ f(\lambda a +(1-\lambda) b)\leq \lambda f(a)+(1-\lambda)f(b). $$ :::info **Lemma.** Let $f:\mathbb{R}\to \mathbb{R}$ be a convex function and let $a,b,c\in \mathbb{R}$ be real numbers with $a<b<c$. Then we have $$ \frac{f(b)-f(a)}{b-a}\leq \frac{f(c)-f(a)}{c-a}\leq\frac{f(c)-f(b)}{c-b} $$ ::: :::warning **Proof.** For simplicity, let $\displaystyle\lambda =\frac{c-b}{c-a}$. One can easily check that $$ b=\lambda a + (1-\lambda)c. $$ Since $f$ is convex, it follows that $$ f(b)\leq\lambda f(a)+(1-\lambda)f(c). $$ We first note that $\lambda f(b)+(1-\lambda)f(b)=f(b)$. This implies \begin{align} f(b)-f(a)&\leq \lambda f(a)+(1-\lambda)f(c)-f(a)\\ &=(1-\lambda)[f(c)-f(a)]\\ &=\frac{b-a}{c-a}\left[f(c)-f(a)\right]. \end{align} Hence, we have $$ \frac{f(b)-f(a)}{b-a}\leq \frac{f(c)-f(a)}{c-a}. $$ In the same way, one can easily obtain the second inequality. ::: Denote $$ s[x,x']=\frac{f(x')-f(x)}{x'-x}. $$ The above lemma shows that $$ s[a,b]\leq s[a,c]\leq [b,c]. $$ :::info **Lemma.** Let $f:\mathbb{R}\to \mathbb{R}$ be a convex function and let $a',a,c,c'\in \mathbb{R}$ be real numbers with $a'<a<c<c'$. Then we have $$ s[a',a]\leq s[x,x']\leq s[c,c'] $$ whenever $a<x<x'<c$. ::: :::warning **Proof.** By the foregoing lemma, we have $$ s[a',a]\leq s[a',x']\leq s[x,x'] \leq s[x,c']\leq s[c,c']. $$ ::: Let $m=s[a',a],M=s[c,c']$. Then we have that $$ m(x'-x)\leq f(x')-f(x)\leq M(x'-x). $$ Let $C=\max\left(|m|,|M|\right)$. We have $$ |f(x')-f(x)|\leq C|x'-x|. $$ This implies that $f$ is a continuous function. :::info **Theorem.** Every convex function is continuous. ::: A function $f:\mathbb{R}\to \mathbb{R}$ is **concave** if for each $\lambda\in [0,1]$, $$ f(\lambda a +(1-\lambda) b)\geq \lambda f(a)+(1-\lambda)f(b). $$ Now, one can easily prove that **every concave function is continuous**.