Cauchy-Schwarz Inequality == - For $x=(x_1,\dots,x_n),y=(y_1,\dots,y_n)\in \mathbb{R}^n$, denote \begin{align} \Vert x\Vert &= \sqrt{x_1^2+\dots+x_n^2}\\ x\cdot y&= x_1y_1+\cdots+x_ny_n \end{align} - The question in concern is how to prove the following inequality: $$ \Vert x\Vert^2\Vert y \Vert^2\geq (x\cdot y)^2. $$ > Proof. Let $$z = \left(\frac{x\cdot y}{\Vert y\Vert}\right)\frac{y}{\Vert y\Vert}.$$ > Since $$(x-z)\cdot z=x\cdot z+z\cdot z=\frac{(x\cdot y)^2}{\Vert y\Vert^2}-\frac{(x\cdot y)^2}{\Vert y\Vert^2}=0,$$ > it follows that > \begin{align} > \Vert x\Vert^2&= x\cdot x = [(x-z)+z]\cdot [(x-z)+z]\\ > &=\Vert x-z\Vert^2+\Vert z\Vert^2\geq \Vert z\Vert^2=\frac{(x\cdot y)^2}{\Vert y\Vert^2}, > \end{align} > and consequently, > $$\Vert x\Vert^2\Vert y\Vert^2\geq (x\cdot y)^2.$$ In what follows, we are going to give an alternative proof. > **Alternative proof.** > Let $t\in \mathbb{R}$. Then > \begin{align} > 0&\leq (tx+y)\cdot (tx+y)=\Vert x\Vert^2t^2+2(x\cdot y) t+\Vert y \Vert^2. > \end{align} > This implies that > $$ > [2(x\cdot y)]^2-4\Vert x\Vert^2\Vert y \Vert^2\leq 0 > $$ > so that > $$ > (x\cdot y)^2\leq \Vert x\Vert^2\Vert y\Vert^2. > $$ ## Some more examples Consider an closed interval $[a,b]$. Prove that for any two continuous functions $f(x)$ and $g(x)$, $$\left(\int_a^b[f(x)]^2dx\right)\left(\int_a^b[g(x)]^2dx\right)\geq \left(\int_a^bf(x)g(x)dx\right)^2.$$ > **Proof.** For any contionous function $f(x)$, we denote $$\Vert f\Vert = \left(\int_a^b [f(x)]^2dx\right)^{1/2}.$$ Let $$\lambda = \frac{\int_a^bf(x)g(x)dx}{\Vert g\Vert^2}.$$ Then \begin{align} \int_a^b [f(x)-\lambda g(x)]g(x)dx&=\int_a^bf(x)g(x)dx-\lambda\Vert g\Vert^2=0. \end{align} Hence, \begin{align} \int_a^b[f(x)]^2dx&=\int_a^b[(f(x)-\lambda g(x))+\lambda g(x)]^2dx\\ &=\int_a^b[f(x)-\lambda g(x)]^2dx+2\lambda\int_a^b[f(x)-\lambda g(x)]g(x)dx+\lambda2\int_a^b[g(x)]^2dx\\ &\geq \lambda^2\int_a^b[g(x)]^2dx \end{align}