# October 26 $CI(\theta,\alpha)$ Need to satisfy the following to be considered a confidence interval: (imagine a normal distribution graph) Middle portion of the graph $=1-\alpha$ Left portion $=\alpha_1$ Left boundary $=Z_{1-\alpha+\alpha_1}=Z_{\alpha_1}$ Right portion $=\alpha_2$ Right boundary $=Z_{1-\alpha_2}$ $\alpha=\alpha_1+\alpha_2$ ### Case 1 $\alpha_1=0$ $\alpha_2=\alpha$ (insert graphic of normal distribution) Left boundary $Z_{\alpha_1}=-\infty$ Right boundary $Z_{1-\alpha_2}=Z_{1-\alpha}$ Right portion $\alpha$ Called a one-sided confidence interval. ### Case 2 $\alpha_1=\alpha$ $\alpha_2=0$ Left boundary $Z_{\alpha_1}=Z_\alpha$ Left area $\alpha$ Right boundary $Z_{1-\alpha_2}=Z_1=+\infty$ One-sided confidence interval ### One-sided Confidence Intervals Examples #### Estimate the "mean income" of households. $x_1...x_n \sim f_x(x;\theta)$ sample $n=4$ $x_1=0$ $x_2=60k$ $x_3=0$ $x_4=120k$ $\bar{X}=45k$ $CI[-5k,95k]*m$ $m=$ some multiplier Bounded on the left since you cannot have negative income, so its a one-sided confidence interval. #### How to solve $\theta$ population $x_1...x_n \sim^{iid} f_x(x,\theta)$ Want: reasonable idea for what values $\theta$ takes $CI(\theta,\alpha)=[l_\alpha,U_\alpha]$ $\mathbb{P}(l_\alpha\le \theta\le U_\alpha)=1-\alpha$ Steps: 1. Pick an estimator 2. find the sampling distribution 3. find a transformation $H(\hat{\theta},\theta)$ such that $y=H(\hat{\theta},\theta)\sim f_y(y)$ doesn't depend on $\theta$ 4. $\mathbb{P}(y_{\alpha_2}\le y\le y_{1-\frac{\alpha}{2}})$ 5. Find $H^{-1}(\hat{\theta},x)$ and use it to compute: $l_\alpha=H^{-1}(\hat{\theta},y_{\alpha_1})$ $U_\alpha=H^{-1}(\hat{\theta},y_{1-\alpha_2})$ $\mathbb{P}(H^{-1}(\hat{\theta},y_{\alpha_1})\le \theta \le H^{-1}(\hat{\theta},y_{1-\alpha_2}))=1-\alpha$ ##### Examples Unless the question explicitly asks to calculate it, you can use the central limit thereom to estimate. ###### 1 $x_1...x_n\sim N(\theta,\sigma^2)$ $CI(\theta,\alpha)=[\bar{X}-\tilde{Z}_{\alpha_2}\frac{\sigma}{\sqrt{n}},\bar{X}+\tilde{Z}_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}]$ ###### 2 $x_1...x_n\sim N(\mu,\theta^2)$ $CI(\theta^2;\alpha)=[\frac{(n-1)s^2}{\gamma^2_{(n-1),\frac{\alpha}{2}}}]$ ###### 3 $x_1...x_n\sim Ber(\theta)$ $\hat{\theta}=\bar{X}$ $CI(\theta,\alpha) \approx []$ ###### 4 ###### 5 ###### 6