<style type="text/css"> .reveal .slides { min-height: 100%; width: 100%; height: 96mm; } .reveal .slides section h1 { /* font-family: "Lato"; */ color: #FFEFEF; text-shadow: -1px -1px 0 rgba(230,2,131, 0.7), 2px -2px 0 rgba(230,2,131, 0.7), -3px 3px 0 rgba(230,2,131, 0.7), 3px 3px 0 rgba(230,2,131, 0.7); } .reveal .slides section h3 { /* font-family: "Lato"; */ color: #FFEFEF; text-shadow: -1px -1px 0 rgba(230,2,131, 0.7), 1px -1px 0 rgba(230,2,131, 0.7), -2px 2px 0 rgba(230,2,131, 0.7), 2px 2px 0 rgba(230,2,131, 0.7); } .reveal img, .reveal video, .reveal iframe { width: 100%; min-width: 100%; max-height: 100%; } html, .reveal { color: #CFC7BF; } ol, ul { font-size: 3.5rem; } .reveal pre code { display: block; width:100%; line-height: 1.5em; border-radius: 0.9rem; font-size: 2rem; padding: 3rem; overflow: auto; } </style> --- # Final Project ## [Northeastern University](https://www.northeastern.edu/) ### Predicting Heart Disease # ❤️ #### By: Nasheya Louviere --- ### Project Objectives - Explore a Kaggle Data Set - Understand summative statistics - Do some data visualization - Try some Machine learning --- # Data aquisition --- ![](https://i.imgur.com/WlALhTd.png) --- ## Convert `.csv` to data frame ```python= heart_df=pd.read_csv('/work/archive-20220531-152154/heart_2020_cleaned.csv') heart_df ``` --- # Data exploration ```python= heart_df.shape heart_df.info() heart_df.describe() ``` --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/e88c80ee8b25498099b81537723d02d4?height=134.26736450195312" height="134.26736450195312" width="500"/> --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/82ccf699c6914bc9baafd1f7b43c8706?height=588.6944580078125" height="588.6944580078125" width="500"/> --- ![](https://i.imgur.com/MUnroQ7.png) --- # Data visualization --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/bfa20d3d3f9849b3a8763393e07a8927?height=600" height="600" width="500"/> --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/6e1ceb2b01ba464c896f81ae010c536f?height=684.1111450195312" height="684.1111450195312" width="500"/> --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/f07b38e235fb4b90961b8902571a04f6?height=672.0972290039062" height="672.0972290039062" width="500"/> --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/a13ddd0e99f8405c982dc2016e647e71?height=507.07989501953125" height="507.07989501953125" width="500"/> --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/08c074adb23c494592cb4013006e2478?height=684.1111450195312" height="684.1111450195312" width="500"/> --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/2d079ef0e6324d0baa29715cfdba9d9d?height=600" height="600" width="500"/> --- ``` import plotly.express as px fig = px.box(heart_df, y="SleepTime", title="Box plot of the Sleep Time column") fig.show() ``` --- <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/c471f06fb16f49da838fdd43640fb745?height=684" height="684" width="500"/> --- # Choose a Model <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/7de3e8d2226c42fb85feeeb63fd324b2?height=98" height="98" width="500"/> --- # Train The Model <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/6aeee09722144d0585b3535a2c6f81d4?height=134.1875" height="134.1875" width="500"/> --- # Make Predictions <iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/4d83d8da34d04f62ba29221a404ed0c6?height=89" height="89" width="500"/> --- <iframe width="560" height="315" src="https://www.youtube.com/embed/uztY8oy8SuU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ---
{"metaMigratedAt":"2023-06-17T10:12:32.864Z","metaMigratedFrom":"YAML","title":"Nasheya Presentation","breaks":true,"slideOptions":"{\"theme\":\"dark\",\"transition\":\"fade\"}","contributors":"[{\"id\":\"0f7a35ec-f2b1-4089-943c-17d8603eb062\",\"add\":554,\"del\":1044},{\"id\":\"c6543d58-8026-4998-aa05-686b8bb8e32b\",\"add\":5316,\"del\":771},{\"id\":null,\"add\":974,\"del\":0}]"}
    220 views
   Owned this note