<style type="text/css">
.reveal .slides {
min-height: 100%;
width: 100%;
height: 96mm;
}
.reveal .slides section h1
{
/* font-family: "Lato"; */
color: #FFEFEF;
text-shadow:
-1px -1px 0 rgba(230,2,131, 0.7),
2px -2px 0 rgba(230,2,131, 0.7),
-3px 3px 0 rgba(230,2,131, 0.7),
3px 3px 0 rgba(230,2,131, 0.7);
}
.reveal .slides section h3
{
/* font-family: "Lato"; */
color: #FFEFEF;
text-shadow:
-1px -1px 0 rgba(230,2,131, 0.7),
1px -1px 0 rgba(230,2,131, 0.7),
-2px 2px 0 rgba(230,2,131, 0.7),
2px 2px 0 rgba(230,2,131, 0.7);
}
.reveal img, .reveal video, .reveal iframe {
width: 100%;
min-width: 100%;
max-height: 100%;
}
html, .reveal {
color: #CFC7BF;
}
ol, ul {
font-size: 3.5rem;
}
.reveal pre code {
display: block;
width:100%;
line-height: 1.5em;
border-radius: 0.9rem;
font-size: 2rem;
padding: 3rem;
overflow: auto;
}
</style>
---
# Final Project
## [Northeastern University](https://www.northeastern.edu/)
### Predicting Heart Disease
# ❤️
#### By: Nasheya Louviere
---
### Project Objectives
- Explore a Kaggle Data Set
- Understand summative statistics
- Do some data visualization
- Try some Machine learning
---
# Data aquisition
---

---
## Convert `.csv` to data frame
```python=
heart_df=pd.read_csv('/work/archive-20220531-152154/heart_2020_cleaned.csv')
heart_df
```
---
# Data exploration
```python=
heart_df.shape
heart_df.info()
heart_df.describe()
```
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/e88c80ee8b25498099b81537723d02d4?height=134.26736450195312" height="134.26736450195312" width="500"/>
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/82ccf699c6914bc9baafd1f7b43c8706?height=588.6944580078125" height="588.6944580078125" width="500"/>
---

---
# Data visualization
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/bfa20d3d3f9849b3a8763393e07a8927?height=600" height="600" width="500"/>
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/6e1ceb2b01ba464c896f81ae010c536f?height=684.1111450195312" height="684.1111450195312" width="500"/>
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/f07b38e235fb4b90961b8902571a04f6?height=672.0972290039062" height="672.0972290039062" width="500"/>
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/a13ddd0e99f8405c982dc2016e647e71?height=507.07989501953125" height="507.07989501953125" width="500"/>
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/08c074adb23c494592cb4013006e2478?height=684.1111450195312" height="684.1111450195312" width="500"/>
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/2d079ef0e6324d0baa29715cfdba9d9d?height=600" height="600" width="500"/>
---
```
import plotly.express as px
fig = px.box(heart_df, y="SleepTime", title="Box plot of the Sleep Time column")
fig.show()
```
---
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/c471f06fb16f49da838fdd43640fb745?height=684" height="684" width="500"/>
---
# Choose a Model
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/7de3e8d2226c42fb85feeeb63fd324b2?height=98" height="98" width="500"/>
---
# Train The Model
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/6aeee09722144d0585b3535a2c6f81d4?height=134.1875" height="134.1875" width="500"/>
---
# Make Predictions
<iframe title="Embedded cell output" src="https://embed.deepnote.com/5032a196-dce0-4509-a217-2b2b4586d05b/bfedaf3e-8074-4a89-9d0f-b5435bd2bb7b/4d83d8da34d04f62ba29221a404ed0c6?height=89" height="89" width="500"/>
---
<iframe width="560" height="315" src="https://www.youtube.com/embed/uztY8oy8SuU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
---
{"metaMigratedAt":"2023-06-17T10:12:32.864Z","metaMigratedFrom":"YAML","title":"Nasheya Presentation","breaks":true,"slideOptions":"{\"theme\":\"dark\",\"transition\":\"fade\"}","contributors":"[{\"id\":\"0f7a35ec-f2b1-4089-943c-17d8603eb062\",\"add\":554,\"del\":1044},{\"id\":\"c6543d58-8026-4998-aa05-686b8bb8e32b\",\"add\":5316,\"del\":771},{\"id\":null,\"add\":974,\"del\":0}]"}