# SSVEP Experiment ## Experiment Setup  Sample of Setup in time:  Keypad setup:  ## 정우 ### CCA Report #### Confusion Matrix  #### Report precision recall f1-score support 0 1.00 1.00 1.00 10 1 1.00 1.00 1.00 10 2 1.00 1.00 1.00 10 3 1.00 1.00 1.00 10 4 1.00 1.00 1.00 10 5 1.00 1.00 1.00 10 6 1.00 1.00 1.00 10 7 1.00 1.00 1.00 10 8 1.00 1.00 1.00 10 9 1.00 1.00 1.00 10 10 1.00 1.00 1.00 10 11 1.00 1.00 1.00 10 accuracy 1.00 120 macro avg 1.00 1.00 1.00 120 weighted avg 1.00 1.00 1.00 120 #### Average Canonical Correlation Rho  ## 지미 #### Confusion Matrix  #### Average Canonical Correlation Rho  #### Report precision recall f1-score support 0 1.00 1.00 1.00 10 1 1.00 1.00 1.00 10 2 1.00 1.00 1.00 10 3 1.00 1.00 1.00 10 4 1.00 1.00 1.00 10 5 1.00 1.00 1.00 10 6 1.00 1.00 1.00 10 7 1.00 1.00 1.00 10 8 1.00 1.00 1.00 10 9 1.00 1.00 1.00 10 10 1.00 1.00 1.00 10 11 1.00 1.00 1.00 10 accuracy 1.00 120 macro avg 1.00 1.00 1.00 120 weighted avg 1.00 1.00 1.00 120 # 정희   precision recall f1-score support 0 0.62 1.00 0.77 10 1 0.57 0.40 0.47 10 2 0.44 0.80 0.57 10 3 0.75 0.60 0.67 10 4 0.50 0.70 0.58 10 5 0.00 0.00 0.00 10 6 0.67 0.80 0.73 10 7 0.75 0.30 0.43 10 8 1.00 0.80 0.89 10 9 0.56 0.50 0.53 10 10 0.45 0.50 0.48 10 11 0.64 0.70 0.67 10 accuracy 0.59 120 macro avg 0.58 0.59 0.56 120 weighted avg 0.58 0.59 0.56 120 ## Top-k Score * **Top-2 Score: 0.841** * **Top-3 Score: 0.925** using the Rho (Canonical Correlation Vector) # 판규   precision recall f1-score support 0 1.00 1.00 1.00 10 1 1.00 1.00 1.00 10 2 1.00 1.00 1.00 10 3 1.00 1.00 1.00 10 4 1.00 1.00 1.00 10 5 1.00 1.00 1.00 10 6 1.00 1.00 1.00 10 7 1.00 1.00 1.00 10 8 1.00 1.00 1.00 10 9 1.00 1.00 1.00 10 10 1.00 1.00 1.00 10 11 1.00 1.00 1.00 10 accuracy 1.00 120 macro avg 1.00 1.00 1.00 120 weighted avg 1.00 1.00 1.00 120 . Given the fMRI data $z$, we aim to learn the reverse diffusion process formulation by: $q(X_{t-1}|X_t,z)$ Conditional information uses cross-attention heads in the attention-based UNet, where $$CrossAttention(Q,KV) = softmax(QK^T/d^{-2})$$ with $$Q = W_Q^{(i)}\phi_i(x_t),K=W_K^{(i)}\tau_{\theta}(z), V=W_v^{(i)}\tau_{\theta}(z)$$ * $\tau_{\theta}$ is the fMRI encoder with a suitable dimension projector * $\phi_i(x_t)$ denotes intermediate values of the UNet * $W_Q^{(i)}, W_K^{(i)}, W_V^{(i)}$ are projector matrices with learnable parameters
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up