# 離散數學 ## 集合 * Definition 1 A set is an unordered collection of object ```python= a = {1, 3, 5} # is a set b = {4, 3, 5} # is a set c = {1, 5, 3} # is a set a = c # 無順序性 ``` * Definition 2 The object in a set are colled, the element, or the members, if the set. A set is said to contain ite element. If an element x is belong to a set A, then we denote it by x ∈ A ```python= o = {1, 2, 3, 4, 5} o = {x | .......} # => is range(1, 5) // # another way to describe a set is to use set builder notation. a = {1, 3, 5, 7, 9} o = {x | is an odd positive intger less than 10} o = {x ∈ z+ | x is odd and x < 10} ``` * other example ```python= # The set of integers: z = {...-2, 0, ....} # The set of positive integers: z+ = {1, 2, 3...} # The set of non-negative intergers: z+(加號底下有0) = {0, 1, 2, 3} # The set of rational numbers Q = {p / q | p ∈ Z, q ∈ Z, and Q != 0} ``` ![](https://i.imgur.com/eIYU8tg.png) * Definition 3 Two sets are equal ![](https://i.imgur.com/9GORYpU.png) :::danger if only if they have the same element. That is, if A and B are sets, than A and B are equal if and only if ::: * 集合 ![](https://i.imgur.com/DSiAVgw.png) ![](https://i.imgur.com/GFpXlGu.png) ![](https://i.imgur.com/QQQtntE.png) ![](https://i.imgur.com/Pxcwowr.png) ![](https://i.imgur.com/Yt2we3b.png) * Definition 7 ![](https://i.imgur.com/Dkj3KUF.png) ![](https://i.imgur.com/fHfapKA.png) ![](https://i.imgur.com/eUKDOFQ.png) ![](https://i.imgur.com/YuZBTfM.png) ![](https://i.imgur.com/9GOUJx4.png) ![](https://i.imgur.com/1mLW0hX.png) * 0![](https://i.imgur.com/gIiT0WA.png) ![](https://i.imgur.com/0CtlbJu.png) ![](https://i.imgur.com/TR4pvVS.png) * example 7 ![](https://i.imgur.com/J3Ef2iJ.png) * one - to - one (到這) ![](https://i.imgur.com/aqXDloN.png) ![](https://i.imgur.com/pKorbbM.png) * example 8 ![](https://i.imgur.com/45O0e75.png) * example 9 ![](https://i.imgur.com/VqxTDrs.png) * note ![](https://i.imgur.com/FucwQo4.png) * && ![](https://i.imgur.com/n95IxRz.png) * one - to - one ![](https://i.imgur.com/2pSEkYR.png) ![](https://i.imgur.com/L65I1q1.png) * defination 6 ![](https://i.imgur.com/MmfBSfz.png) * 廣義遞增 ![](https://i.imgur.com/7mDtq3y.png) * 遞增遞減 ![](https://i.imgur.com/I1lstDm.png) * defination 7 ![](https://i.imgur.com/QVwuV39.png) * example 12 ![](https://i.imgur.com/FYbYVQb.png) * example 13(使用定義 by defination onto function) ![](https://i.imgur.com/HgwSjP9.png) * example 14(not onto) ![](https://i.imgur.com/zkdFQwI.png) * defination 8 ![](https://i.imgur.com/syeuDsO.png) * example 16 ![](https://i.imgur.com/jAx7gHm.png) * one - hence ![](https://i.imgur.com/khuepBn.png) * note ![](https://i.imgur.com/7CkSY14.png) * defination 9 ![](https://i.imgur.com/lWKboOB.png) * 嚴謹寬鬆 ![](https://i.imgur.com/eLUnGWX.png) * 合成函數與連鎖率 ![](https://i.imgur.com/vfSj8wN.png) * 2.5 ![](https://i.imgur.com/FreD3lB.png) * defination 2 ![](https://i.imgur.com/Ij08wo0.png) * 證明無窮可數 ![](https://i.imgur.com/77EtkcU.png) * example 3 ![](https://i.imgur.com/2BnPp84.png) * 可數 ![](https://i.imgur.com/VnKyQpm.png) * example 4 ![](https://i.imgur.com/d6sSZC8.png) * 數羊 ![](https://i.imgur.com/xek4giW.png) ![](https://i.imgur.com/95FWWwd.png) ![](https://i.imgur.com/SwyVGZT.png) ![](https://i.imgur.com/sBcxds3.png) ## chapter 3 ![](https://i.imgur.com/lCs6aWV.png) * example 1 ![](https://i.imgur.com/bZuCs9N.png) * 0.0 ![](https://i.imgur.com/WKIvxQB.png) * example 3 ![](https://i.imgur.com/PpJLSFk.png) * example 5 ![](https://i.imgur.com/kBfqdxn.png) ![](https://i.imgur.com/XjPPnU3.png) ![](https://i.imgur.com/go53UcG.png) ![](https://i.imgur.com/5ZBHXvu.png) ![](https://i.imgur.com/Qut0ANE.png) ![](https://i.imgur.com/AIHGDVq.png) ![](https://i.imgur.com/f0DJscF.png) ![](https://i.imgur.com/y7MVibp.png)