Linear Algebra Section 3.3 HomeWork === ### 1.Label the following statements as true or false. --- **$(a)$ Any system of linear equations has at least one solution.** False. Considerate the system $0x=2$, there is no solution. **$(b)$ Any system of linear equations has at most one solution** False. Considerate the system $0x=0$, there are infinite solutions. **$(c)$ Any homogeneous system of linear equations has at least one solution.** True. Consider any homogenous sytstem $Ax=0$, there will be at least one solution $x=0$ **$(d)$ Any system of n linear equations in n unknowns has at most one solution.** False. Consider the system $0x=0$, there are infinte solutions. **$(e)$ Any system of n linear equations in n unknowns has at least one solution.** False. Considerate the system $0x=2$, there is no solution. **$(f)$ If the homogeneous system corresponding to a given system of linear equations has a solution, then the given system has a solution.** False. Considerate the system $0x=2$, there is no solution while the homogeneous system correpoding $0x=0$ has infinite solution. **$(g)$ If the coefficient matrix of a homogeneous system of n linear equations in n unknowns is invertible, then the system has no nonzero solutions.** True. Consider the homogeneous sytstmen $Ax=0$, where $A$ is a $n\times n$ invertible matrix. The only solution will be $A^{-1}b$. **$(h)$ The solution set of any system of m linear equations in n unknowns is a subspace of $F^n$.** False. Consider the system $x=2$, the solution set is $\{2\}$, which is not a subspace of $F^n$. ### 2.For each of the following homogeneous systems of linear equations, find the dimension of and a basis for the solution set. --- **$(a)$ \begin{align} x_1 + 3x_2 &= 0 \\ 2x_1 + 6x_2 &= 0 \end{align}** sol: First we write the system in matrix notation as follow: \begin{align} \underbrace{\begin{bmatrix} 1 & 3\\ 2 & 6 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\phantom{A}x\phantom{A}}&=\underbrace{ \begin{bmatrix} 0\\0 \end{bmatrix}}_{\phantom{A}0\phantom{A}} \end{align} Consider the matrix $A$: \begin{equation} \begin{bmatrix} 1 & 3\\ 2 & 6 \end{bmatrix}\xrightarrow[R_2: R_2-2R_1]{\hspace{2cm}}\begin{bmatrix}1 & 3\\0 & 0\end{bmatrix} \end{equation} Hence $rank(A)=1$. $\because$ $rank(A)+Null(A)=2$, $\therefore$ $Null(A)=2-1=1$ is the dimension of the solution set($\because$ the system is homogenous). Now we consider the reduced matrix$\begin{bmatrix}1&3\\0&0\end{bmatrix}$, we get the equation $x_1+3x_2=0$, it is trivial to see that $\begin{pmatrix}3\\-1\end{pmatrix}$ is a basis of the solution set. **$(b)$ \begin{align} x_1 + x_2 -x_3 &= 0 \\ 4x_1 + x_2 -2x_3 &= 0 \end{align}** sol: First we write the system in matrix notation as follow: \begin{align} \underbrace{\begin{bmatrix} 1 & 1&-1\\ 4 & 1 &-2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\phantom{A}x\phantom{A}}&=\underbrace{ \begin{bmatrix} 0\\0 \end{bmatrix}}_{\phantom{A}0\phantom{A}} \end{align} Consider the matrix $A$: \begin{align} \begin{bmatrix} 1 & 1&-1\\ 4 & 1 &-2 \end{bmatrix} \xrightarrow[C_1: C_1-C_2 \phantom{A} C_3:C3+C_2]{\hspace{2cm}} \begin{bmatrix} 0 & 1 & 0\\3 & 1 & -1 \end{bmatrix} \xrightarrow[C_3:C_3+\frac{1}{3}C_1]{\hspace{2cm}} \begin{bmatrix} 0 & 1 & 0 \\ 3 & 1 & 0 \end{bmatrix} \end{align} Hence $Rank(A)=2$. $\because Rank(A)+Null(A)=3$ $\therefore Null(A)=3-2=1$ is the dimension of the solution set($\because$ the system is homogenous.) Now we consider the matrix $A$: \begin{align}\begin{bmatrix} 1 & 1&-1\\ 4 & 1 &-2 \end{bmatrix} \xrightarrow[R_2:R_2-R1]{\hspace{2cm}} \begin{bmatrix}1&1&-1\\3&0&-1\end{bmatrix} \xrightarrow[R_1:R_1-R2]{\hspace{2cm}} \begin{bmatrix} -2 & 1&0\\ 3&0&-1 \end{bmatrix}\end{align} We get the equation: \begin{align} -2x_1 + x_2+0x_3 &= 0 \\ 3x_1 +0 x_2-x_3 &= 0 \end{align} From the first equation we get $x_2=2x_1$, and from the second equation we get $x_3=3x_1$. It is trivial to see that $\begin{pmatrix}1\\2\\3\end{pmatrix}$ is a basis of the solution set. **$(3)$ \begin{align} x_1+ 2x_2 - x_3 &= 0\\ 2x_1 + x_2 + x_3 &= 0 \end{align}** sol: First we write the system in matrix notation as follow: \begin{align}\underbrace{\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} }_{x}= \underbrace{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} }_{0} \end{align} Consider the matrix $A$: \begin{align} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix} \xrightarrow[R_2:R_2-2R_1]{\hspace{2cm}} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 3 \end{bmatrix} \xrightarrow[R_1:R_1+\frac{1}{3}R_2]{\hspace{2cm}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -3 & 3 \end{bmatrix} \end{align} There are two independent columns in the reduced matrix$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -3 & 3 \end{bmatrix}$, thus $Rank(A)=2$. $\because Rank(A)+Null(A)=3$ $\therefore Null(A)= 2-1=1$ is the dimension of the solution set.($\because$ the system is homogenous.) Now we consider the reduced matrix: \begin{align} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -3 & 3 \end{bmatrix} \end{align} We get the following equations: \begin{align} x_1 +1 x_2 &= 0 \\ -3x_2 + 3x_3 &= 0 \end{align} From the first equation we get $x_1=-x_2$, and from the second equation we get $x_3=x_2$. It is trival to see that$\begin{pmatrix}-1\\1\\1\end{pmatrix}$ is a basis for the solution set. **$(4)$ \begin{align} 2x_1+x_2-x_3&=0\\ x_1-x_2+x_3&=0\\ x_1+2x_2-2x_3&=0 \end{align}** sol: First we write the system in matrix notation as follow: \begin{align} \underbrace{ \begin{bmatrix} 2&1&-1\\ 1&-1&1\\ 1&2&-2 \end{bmatrix} }_{A}\underbrace{ \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}}_{\phantom{A}x\phantom{A}}&= \underbrace{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} }_{0} \end{align} Consider the matrix A: \begin{align}\begin{bmatrix} 2&1&-1\\ 1&-1&1\\ 1&2&-2 \end{bmatrix} \xrightarrow[R_2:R_2-\frac{1}{2}R_1,R_3:R_3-\frac{1}{2}R_1]{} \begin{bmatrix} 2&1&-1\\ 0&-3&3\\ 0&0&0 \end{bmatrix} \xrightarrow[R_2:R_2\times(-\frac{1}{3}),R_1=R_1+\frac{1}{3}R_2]{} \begin{bmatrix} 2&0&0\\ 0&1&-1\\ 0&0&0 \end{bmatrix} \end{align} There are two indepedent columns,thus $rank(A)=2$. $\because$
{"metaMigratedAt":"2023-06-17T17:41:47.768Z","metaMigratedFrom":"Content","title":"Linear Algebra Section 3.3 HomeWork","breaks":false,"contributors":"[{\"id\":\"c7f99a07-ed88-4e05-8119-2faa5c640f3a\",\"add\":8595,\"del\":2304}]"}
    262 views