# [***Paper Review***] A Polarimetric Radar Forward Operator for Model Evaluation # ***1.*** Introduction ## ***1.1*** 模式對流預報能力 - **短延時降水預報主要由對流降水預報能力主導** Improved short-range forecasts of precipitation require improvements in the representation of convective events in numerical weather prediction. (Fritsh et al. 1998) - **解析度必須達到水平尺度 $100\ m$ 才能精確模擬對流動力** Resolutions of at least 100m will be required to accurately simulate convective dynamics. (Bryan et al. 2003; Craig and Dornbrack 2008) - **高解析中尺度模式能直接模擬對流動力,表現較積雲參數法好** High Resolution mesoscale models performed better than single column models with a convection scheme. (Bechtold et al. 2000; Guichard et al. 2004) - **當解析度越高,微物理參數法的結果會越顯著影響對流動力** Microphysical processes such as the formation of heavily rimed ice hydrometeors (graupel and hail) feed back onto the storm dynamics. (Brandes et al. 2006) - **微物理參數法對水物形成、消散、交互作用的掌握程度,皆會顯著影響對流的強度及生命週期** The lifecycle and intensity of convections strongly depend on the ability of the microphysical parameterization scheme to represent the processes of formation, decomposition, and interaction of the different hydrometeor types. - **冰相粒子的掌握程度會顯著影響對流的形成及發展** The formation and distribution of precipitation has been found to be extremely dependent on the treatment of ice phase hydrometeors. (Ferrier et al. 1995; Gilmore et al. 2004; Colle et al. 2005; Garvert et al. 2005) ## ***1.2*** 模式 QPF 校驗 - **在模式QPF (主要為微物理參數法) 校驗方面,地面測站僅能提供二維降水資料,而雷達資料可以提供更高時空解析度的三維水物資訊** When it comes to **QPF (micropysics scheme)** verification, radar can provide 3D information at a high temporal and spatial resolution while rain gauge can only offer 2D information. (Keil 2003) - **各雙偏極化參數間的組合,可以有效描述掃描體積內的主要水物種類** Different polarimetric radar quantities offers the unique possibility of classifying the predominant hydrometeor type within the resolution volume. (Holler et al. 1994; Vivekanandan et al. 1999; Zrnic et al. 2001) - **雷達觀測參數與模式輸出參數不同** → **兩種校驗方法** Polaremetric radar systems do not provide explicit measurements of the quantities appearing in the microphysical equations or models themselves. → observation-to-model approach & **model-to-observation approach (using *forward operator*)** - **透過雙偏極化參數的校驗,可以比較模式與觀測間的微物理過程差異,檢驗降水強度及水物分布** Comparison of synthetic and observed polarimetric quantities evaluate not only precipitation intensity but also micropysical processes, which includes hydrometeor spatial distribution and classification. ## ***1.3*** Radar Forward Operator - **Radar Forward Operator 明確描述電磁波傳遞過程及水物散射過程** Radar forward operator compute the scattering processes **explicitly** and also consider propagation effects. - **為了得到較好的較驗結果,Forward Operator 的假設必須盡可能與模式達到一致** For a successful evaluation of model physics, the link between the model and the forward operator has to conform as closely as possible to the model assumption. - **Forward Operator 的自由參數與水物的形狀、密度、掉落特徵等有關** The "free" parameters are mainly associated with the microphysical properties of precipitating ice hydrometeors, such as shape, density, and falling behavior. - **利用敏感度試驗檢驗各個自由參數對雙偏極化參數的影響程度** Sensitivity tests will be used to identify the subset of parameters that make the dominant contributions to the radar signal. - **利用前人的研究 (Holler et al. 1994) 剃除不合理的自由參數組合** The parameter ranges from a simple hydrometeor classification scheme (Holler et al. 1994) will be used to exclude unreasonable combinations of parameters. # ***2.*** The polarimetric radar forward operator **SynPolRad** ## ***3 Stages in SynPolRad*** ![](https://i.imgur.com/22ynSfH.png) 1. Calculate the **interactions** (scattering and attenuation) between radar beam and hydrometeors using **T-matrix**. (Bringi et al. 1986) 2. Calculate the **propagation** (attenuation and refraction) of radar beam. (following Hasse and Crewell 2000) 3. **Interpolate** observed and synthetic polarimetric radar quantities to the same coordinate system. ## ***2.1*** Calculation of the polarimetric quantities ($Z_{HH}$, $Z_{DR}$, and $L_{DR}$) - Definitions of $Z_{HH}$, $Z_{DR}$, and $L_{DR}$: $$ Z_{HH}=10\log(z_{HH}) $$ $$ Z_{DR}=10\log(\dfrac{z_{HH}}{z_{VV}}) $$ $$ L_{DR}=10\log(\dfrac{z_{HV}}{z_{HH}}) $$ - Relationship between **transmitted wave $\vec{E^i}$** and **scattered wave $\vec{E^s}$**: $$ \vec{E^i}=\vec{S}\times\vec{E^i} $$ $$ \left [ \begin{array}{cc} E^s_V \\ E^s_H \end{array} \right ]= \left [ \begin{array}{cc} S_{VV} & S_{VH} \\ S_{HV} & S_{HH} \end{array} \right ] \left [ \begin{array}{cc} E^i_V \\ E^i_H \end{array} \right ] $$ where $\vec{S}$ is the **backscatter matrix**. - Definitions of $z_{HH}$, $z_{VV}$, and $z_{HV}$: $$ z_{HH}=\dfrac{\pi^5|K|^2}{\lambda ^4}\int_{D}D^6N(D)dD\ \times\ \int_{\theta}|S_{11}\sin^2{\theta}+S_{22}\cos^2{\theta}|^2p(\theta)d\theta $$ $$ z_{VV}=\dfrac{\pi^5|K|^2}{\lambda ^4}\int_{D}D^6N(D)dD\ \times\ \int_{\theta}|S_{11}\cos^2{\theta}+S_{22}\sin^2{\theta}|^2p(\theta)d\theta $$ $$ z_{HV}=\dfrac{\pi^5|K|^2}{\lambda ^4}\int_{D}D^6N(D)dD\ \times\ \int_{\theta}|S_{11}-S_{22}|^2\cos^2{\theta}\sin^2{\theta}\ p(\theta)d\theta $$ ## ***2.2*** Calculation of the complex dielectric factor $K$ - **$|K|^2$ 值主要由粒子組成成分決定,其變化會顯著影響回波值** Radar observations are highly sensitive to the complex dielectric factor, which varies significantly depending on the phase and composition of the scattering particle. - **$|K|^2$ 亦為溫度和雷達波長的常數** The complex dielectric factor also depends on temperature and wavelength. - **$|K|^2$ 越大,雙偏極化訊號越明顯** High dielectric factors cause larger depolarization, while polarimetric signatures are reduced for low-density ice hydrometers. (Matrosov et al. 1996) - **SynPolRad 假設所有混相粒子皆為冰/水/空氣均質混合而成** Ice particles are taken to be homogeneous in SynPolRad. - **在給定波長及溫度的情況下,先求出純冰相粒子 (Warren 1984) 及純水相粒子 (Ray 1972) 的$|K|^2$,再依據粒子密度及融化率求出混相粒子的$|K|^2$** Dielectric factors are derived for pure ice (Warren 1984) and water (Ray 1972) at given temperature and wavelength. Then, $K$ is calculated for the given hydrometeor, taking into account its density and degree of melting. ## ***2.3*** Beam propagation and attenuation ### ***2.3.1*** Beam propagation - **使用地球有效半徑** Assume **effective Earth radius** $R_{eff}$: $$ R_{eff}=\dfrac{4}{3}\times R_{E} $$ where $R_{E}$ is the actual Earth radius. - **地球有效半徑假設折射指數隨高度為線性遞減** The approach lies in the assumption of a linear dependence of the atmosphere's refractive index on height. ### ***2.3.2*** Beam attenuation - **Specific Attenuation** $k\ [dB/km]$ - **Specific Differential Attenuation** $A_{dp}\ [dB/km]$ which is defined as the difference in attenuation in the horizontal and vertical channel. - **水物造成的衰減利用T-matrix計算** The attenuation resulting from the presence of hydrometeors are calculated by the T-matrix. (Vivekanandan et al. 1990) - **空氣/水氣造成的衰減利用 Liebe et al. (1993) 的方法計算** Gaseous attenuation due to the presence of molecular oxygen, water vapor, and nitrogen is computed employing the propagation model of Liebe et al. (1993). - The attenuated polarimetric quantities can be calculated as $$ Z_{HH}=Z^o_{HH}-2\int_0^rk\ dr $$ $$ Z_{DR}=Z^o_{DR}-2\int_0^rA_{dp}\ dr $$ $$ L_{DR}=L^o_{DR}+\int_0^rA_{dp}\ dr $$ where r is the distance from the radar. (Bringi and Chandrasekar 2001) ## ***2.4*** Interpolation of the observations ### ***2.4.1*** PPI/RHI Scan 1. **在模式網格點上計算各個合成雙偏極化參數** Compute the polarimetric quantities at the grid points of the model. 2. **將合成雙偏極化參數內插至以合成雷達為中心的極座標,以計算折射、衰減等過程** Interpolate the variables to the polar coordinate system for the simulation of beam propagation including attenuation along its path. 3. **將觀測及合成的雷達參數自極座標轉換回卡氏座標** Both the observed and the synthetic polarimetric radar data are transferred back to the model grid for evaluation. ### ***2.4.2*** The reason to do "3." (Why not stop at 2.) - **模擬的極座標解析度較觀測低** The resolution of radar is finer than the model simulation. - **觀測的次網格資訊和極值可以被平滑化** The subgrid variability and extreme values of the observation can be smoothed. - **卡式座標能簡化統計計算過程** The regular horizontal resolution can simplify the computation of statistics. - **模式中雷達在不同位置的模擬結果,可以更有效率的互相比較** The comparison of simulated observations for different positions of the radar in the model domain can be more efficient. # ***3.*** Application to the NWP model ## The link between SynPolRad and model - **SynPolRad Inputs**: - Directly from NWP model: **PSD**, **density** - Free parameters: **shape** (axis ratio), **falling behavior** (canting angle $\theta$ ), **degree of melting** (dielectric factor $|K|^2$ ) - **Schematic Diagram** between SynPolRad and model: ![](https://i.imgur.com/GmWuNnR.png) - **For rain**: - **DSD**: from microphysical schemes - **Density**: $\rho=1\ g/cm^3$ - **Dielectric factor**: $|K|^2=0.93$ (water) - **Axis ratio**: $\alpha=\alpha(D)$ (Andsager et al. 1999) - **Canting Angle** $\theta$ : $\theta=10^\circ$, $\sigma_{\theta}=5^{\circ}$ (Chandrasekar et al. 1988; Straka et al. 2000) ## **3.1** Sensitivity of polarimetric quantities to microphysical properties of ice - **The goal**: Investigate the importance of individual input parameters for the polarimetric variables and to find relations or dependencies among them. - **The input parameters**: - **Temperature**: $T=-10^{\circ}C$ - **Wave Length**: $\lambda=5.45\ cm$ (C-band) - **Free Parameters**: chosen to represent the full range of ice phase hydrometeors in the atmosphere ![](https://i.imgur.com/qSaf12g.png) - **The results** 1. $N_0$: - 回波隨 $N_0$ 變大而增大,增大幅度在 $N_0$ 很小時尤其明顯 - $LDR$ 和 $Z_{DR}$ 不受 $N_0$ 影響 - 平均 $Z_{DR}<0$ 乃是因為 $Axis\ Ratio$ 的範圍大部分 $>1$ - ![](https://i.imgur.com/zIqPaK4.png) 2. $D_0$: - 回波隨 $D_0$ 變大而增大 - $LDR$ 不受 $D_0$ 影響 - $Z_{DR}$ 的極值在 $D_0$ 變大時有增大趨勢 - ![](https://i.imgur.com/rye4e8C.png) 3. $\theta_{Max}$: - 回波不隨 $\theta_{Max}$ 變化 - $LDR$ 隨 $\theta_{Max}$ 增加而變大,在 $\theta_{Max}=60^\circ$ 時達到最大 - $Z_{DR}$ 在 $\theta_{Max}$ 變大時,極值有變小趨勢 - $LDR$ 與 $Z_{DR}$ 為相對的概念:$LDR$ 描述粒子在極化方向的傾斜程度;$Z_{DR}$ 描述粒子在極化方向的排列整齊程度 - ![](https://i.imgur.com/8Ao73IN.png) 4. $Axis\ Ratio$: - 回波在 $Axis\ Ratio=1$ 時有極大值,因球型粒子能最有效率填滿解析體積 - $LDR$ 隨粒子越偏離球形而增加 - $Z_{DR}$ 在 $Axis\ Ratio<1$ (扁平狀) 時 $<0$,在 $Axis\ Ratio>1$ 時 $>0$ - $Z_{DR}$ 有一條 $0$ 值線乃肇因於粒子傾斜時,在極化平面上有機會呈現圓形 - ![](https://i.imgur.com/XJ1bQmf.png) 5. $Ice\ Density$ - 回波、$LDR$、$Z_{DR}$ 皆隨冰密度增加而更顯著 - ![](https://i.imgur.com/Jiv7faU.png) - **To study the impact of varying dielectric factor (fucntion of ice density and water content)**: - **固定參數**:$N_0=800\ mm^{-1}m^{-3}$、$D_0=5\ mm$、$\theta=40^\circ$、$Axis\ Ratio=0.3$ - **The Results**: - 回波隨 $Water\ Portion$ 和 $Density$ 增大而變大,其中 $Water\ Portion$ 的影響較顯著 - 圖中鉛值線段,代表在給定密度下,空氣被水填滿後,$|K|^2$ 在其演算法下不改變的情形 - ![](https://i.imgur.com/3xQfyhR.png) - **The summarize of sensitivity experiment**: - 回波主要由 $PSD\ (N_0\ 、D_0)$ 和 $|K|^2\ (density\ 、degree\ of\ melting)$ 影響 - $LDR$ 及 $Z_{DR}$ 主要由 $canting\ angle\ 及\ axis\ ratio$ 影響 - $LDR$ 與 $Z_{DR}$ 為相對的概念:$LDR$ 描述粒子在極化方向的傾斜程度;$Z_{DR}$ 描述粒子在極化方向的排列整齊程度 - 回波、$LDR$、$Z_{DR}$ 皆隨著 $|K|^2$ 變大而增加 ## ***3.2*** Determination of the free parameters for ice - **利用 $LDR$ 跟 $Z_{DR}$ 的組合來分類水物** Hydrometeor classification is based only on $LDR$ and $Z{DR}$. - **利用 Holler et al. (1994) 中的水物分類方法,限制不同水物的 $LDR$ 及 $Z_{DR}$ 區間** An additional constraint is provided by specification of typical thresholds for the polarimetric quantities $LDR$ and $Z_{DR}$ for different hydrometer types from a hydrometeor classification scheme. (Holler et al. 1994) - **Gains from sensitivity experiment**: $LDR$ and $Z_{DR}$ mainly depend on $|K|^2$, $Axis\ Ratio$, and $\theta$. - **因此某些固定的 $\theta$ / $Axis\ Ratio$ 組合可以使 $LDR$ 和 $Z_{DR}$ 在個別水物限制的區間中** A pair of fixed $Axis\ Ratio$ and $\theta$ can be defined such that the resulting values of synthetic $LDR$ and $Z_{DR}$ will always range within the thresholds of the hydrometeor classification. - **以 Graupel 作為求取 free parameters 的範例** - **Graupel Assumption**: - Dry / Density ($\rho=0.2\ g/cm^3$) provided by NWP model → $|K|^2$ is determined - $Axis\ Ratio$ is independent to $Size$ - $N(D)$, $N_0$, 和 $\lambda$ 已由NWP model COSMO-DE 提供 - **在 Graupel 所限制的 $Z_{DR}$ 和 $LDR$ 過去個案中,作$\theta_{Max}-Axis\ Ratio-Hydrometeor$ 相位圖**: - ![](https://i.imgur.com/X76Irwp.png) - 取 $Axis\ Ratio=0.5$, $\theta_{Max}=40^\circ$ 作為 Graupel 的 free parameter - **各水物在SynPolRad輸入的參數**: $N(D)$, $N_0$, 和 $\lambda$ 已由NWP model 提供 ![](https://i.imgur.com/7tsSaf6.png) ## ***3.3*** Melting ice and brightband effects - **利用不同比例的冰/水混和來模擬正在溶解的冰相粒子** NWP models describe melting more crudely as a transition from snow to rain with coexisting snow and rain phase. - **Illingworth 2004 指出,由於介電係數增加及粒子滾動,溶解層的 $LDR$ 會變大,$>-15\ dB$,因此 SynPolRad 透過調整 $\theta$ 和 $Water\ Portion$ 使溶解層的 $LDR$ 變大** SynPolRad changes the free parameters in order to reach the typical $LDR$ vales of $-15\ dB$ (Illingworth 2004) resulting from the enhanced tumbling of melting particles. - **$\theta$ 和 $Water\ Portion$ 改變後的值由敏感度實驗決定**: - 敏感度實驗輸入**參數範圍** ($\theta_{Max}$、$\Delta\theta$、$Water\ Portion$): ![](https://i.imgur.com/jvq5fNQ.png) - 敏感度實驗結果: 由前兩張圖決定 $\theta_{Max}=60^\circ$、$\Delta\theta=45^\circ$ 由後兩張圖決定 $Water\ Portion=36\%$ ![](https://i.imgur.com/jbqzCph.png) ![](https://i.imgur.com/LK3b7wv.png) # ***4.*** Testing SynPolRad ## ***4.1*** Case Description - **Case**: - **Time**: 12 August 2004 - **Type**: squall line - **Model**: - **Model Name**: COSMO-DE - **Model Domain**: 100 $\times$ 100 $\times$ 40 - **Horizontal Resolution**: 2.8 km - **Model Start Time**: 0000 UTC - **Observation**: - **Time**: 1900 UTC - **Scan**: $1^\circ$ PPI scan by POLDIRAD - **Reflectivity**: ![](https://i.imgur.com/jEUu0tl.png) ## ***4.2*** Tests for Rain/Snow/Graupel respectively - **The Goal**: To test the consistency between SynPolRad and the NWP model. - **Model output to SynPolRad**: $q_{rain}$, $q_{snow}$, $q_{graupel}$, and $q_{precipitation}$ ![](https://i.imgur.com/pXk75dM.png) - **The Results**: ![](https://i.imgur.com/9oEh7As.jpg) - **Discusstion of the Results**: - **Rain**: - 成功模擬出兩個對流中心 ( $Z=55\ dBZ$, $Z_{DR}=3\ dB$, $LDR=-25\ dB$ ) - 對流胞的上衝流使 $0^\circ C$ 線以上也有雨滴 - $Z_{DR}$ 較大的地方被分類為 $"Heavy\ Rain"$ - $0^\circ C$ 線以上被分類為 $"Snow"$ 乃是因 classification scheme 只用溫度來作為 $"Snow"$ 和 $"Rain"$ 的區分 - **Snow**: - 輸入的 mixing ratio 較雨少,$Z$ 也較雨低 - 有模擬出雷達亮帶 - $Z_{DR}$ 和 $LDR$ 的極值出現在亮帶 ( $Z_{DR}=2.5\ dB$, $LDR=-15\ dB$ ) - 因 $Z_{DR}$ 和 $LDR$ 在亮帶增大,影響到水物分類的結果 - **Graupel**: - 雖然 mixing ratio 較雨多,但 $|K|^2$ 較小使的回波較低 - 有模擬出雷達亮帶 - $Z_{DR}$ 和 $LDR$ 的極值出現在亮帶 - 因 $Z_{DR}$ 和 $LDR$ 在亮帶增大,影響到水物分類的結果 ## ***4.3*** Testing for the Whole - **Comparison of PPI Scan**: ![](https://i.imgur.com/91ZZw44.png) - 左圖為觀測,中圖與右圖為兩個不同雷達位置的模擬結果(三角形為雷達位置,有考慮衰減) - 對流位置大致掌握,層狀降水強度高估、範圍低估 - **Comparison of RHI Scan**: - **Reflectivity**: ![](https://i.imgur.com/f7x3lRA.png) - 水相粒子高估,冰相粒子低估 - 層狀區和亮帶高估 - 亮帶的高估使右圖對流區受衰減而嚴重低估 - 模式高估對流深度及亮帶高度 - $Z_{DR}$: ![](https://i.imgur.com/3o0QyXU.png) - 觀測中 $Z_{DR}$ 較大的區域在降水較強的地方及亮帶 - 觀測中對流後方因衰減使 $Z_{DR}$ 減小至$<0$ - 模擬中亮帶 $Z_{DR}$ 高估 - $LDR$: ![](https://i.imgur.com/TMrypCS.png) - 觀測中 $LDR$ 在對流區及亮帶較強,前者因對流區內有較多的 $graupel$ 及 $hail$ - 模式中有掌握亮帶 $LDR$ 的趨勢 - 模式中沒有掌握對流區 $LDR$ 的趨勢,因模式並沒有模擬 $hail$ 或 $high-density\ graupel$ - **Hydrometeor Classification**: ![](https://i.imgur.com/SuR7Zo0.png) - 觀測中,上層為雪、下層為雨,亮帶及對流區有 graupel 及 hail - 模式在冰相粒子方面將雪誤判為軟雹 (主要肇因於 $LDR$ ) ,顯示模式微物理參數法尚無法有效掌握冰相粒子 - 模式並沒有預報 $hail$ # ***5.*** Discussion and conclusions - 在單一水物分類上,SynPolRad 可以模擬出與 NWP model output 大致一致的結果,而這也是必須的,代表 SynPolRad 可以有效的以模擬雙偏極化參數反映模式微物理參數法的結果,進而與雷達觀測作比較 - SynPolRad 不只可以透過回波估計降水強度,也可以透過雙偏極化參數估計冰相粒子的分布情形,更能代表整個模式中的降水過程 - 由第***4.3***節的比較可以看出,預報模式對冰相粒子的掌握程度尚且不足 - SynPolRad 尚無法模擬 $K_{DP}$ ,而在雷達實務運作上 $K_{DP}$ 應較 $LDR$ 更為重要 - **SynPolRad 可以建立一套標準作業程序,仔細檢驗大量時間及空間的模式產物,更有效率檢驗微物理參數法的問題所在,進而改進以增進預報能力**