# HW36 ## ![](https://i.imgur.com/cLpP3Rk.png) * ### (1) $a_2 =4, a_3=9$ * ### (2) 猜測 $$ a_n= n^2 $$ * ### (3) 1. 當$n=1$時,$a_1=1+1\times(1-1)=1$ ,原式成立 2. 假設$n=k$ ( $k\in N$),原式成立,則 $$ a_k= k^2 $$ 3. 當 $n=+k+1$, $$ a_{k+1}= a_k + [(2(k+1)-1)] \\=k^2+2k+1 \\= (k+1) \\ $$ 原式亦成立 4. 故原式由數學歸納法得證,$Q.E.D$ ## ![](https://i.imgur.com/VxajiSH.png) * (1) $$ a_n=n\times (2n+1) $$ * (2) 1. 當$n=1$時,$a_1=1\times3=3$ ,原式成立 2. 假設$n=k$ ( $k\in N$),原式成立,則 $a_k=k\times (2k+1)$ 3. 當 $n=k+1$, $$ a_{k+1} = 4k+3+a_k \\= 4k+3 + k\times (2k+1) =\\= 4k+3 +2k^2 +k \\=(k+1)(2k+3) \\=(k+1)[2(k+1)+1] $$ **原式亦成立** 4. 故原式由數學歸納法得證,$Q.E.D$ ## ![](https://i.imgur.com/EvJ3UGy.png) $$ a_{100} = {100 \over 100+1} = {100\over 101} $$