# Week 1: Vectors and Matrices ## Dot Product The dot product of two vectors $\mathbf{u}$ and $\mathbf{v}$ is calculated as: $$ \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta $$ where $\theta$ is the angle between them. ### Example Let $\mathbf{u} = (2, 3)$ and $\mathbf{v} = (4, 1)$: $$ \mathbf{u} \cdot \mathbf{v} = 2(4) + 3(1) = 11 $$ --- ## Magnitude and Direction - **Magnitude:** $$ \|\mathbf{v}\| = \sqrt{x^2 + y^2} $$ - **Direction:** $$ \theta = \arctan\left(\frac{y}{x}\right) $$ --- ## Trigonometric Definitions ### Polar and Cartesian Coordinates - **From Cartesian to Polar:** $$ r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right) $$ - **From Polar to Cartesian:** $$ x = r \cos \theta, \quad y = r \sin \theta $$ --- ## Solving Linear Equations ### Geometric Interpretation Solving a system of linear equations involves finding the intersection of their corresponding lines (in 2D) or planes (in 3D). ### Matrix Example For $\mathbf{A} \mathbf{x} = \mathbf{b}$, where: $$ \mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} $$ Solve via elimination or substitution to find $\mathbf{x}$. --- ## Row Reduction ### Example: Gaussian Elimination Given matrix: $$ \mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -3 & 4 \\ -1 & 1 & 3 \end{bmatrix} $$ Perform row reduction to reach row echelon form: $$ \begin{bmatrix} 1 & 2 & -1 \\ 0 & -7 & 6 \\ 0 & 0 & -2 \end{bmatrix} $$ --- ## Linear Combinations A **linear combination** involves scaling and summing vectors: $$ c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots $$ ### Example Let $\mathbf{v}_1 = (1, 0)$ and $\mathbf{v}_2 = (0, 1)$: $$ 3\mathbf{v}_1 + 2\mathbf{v}_2 = (3, 2) $$ --- ## Linear (In)dependence and Span - **Linear Dependence:** Vectors are dependent if one can be written as a combination of others. - **Span:** The set of all vectors that can be formed as linear combinations of a given set. --- ## Matrix Operations ### Matrix-Vector Multiplication Matrix-vector multiplication applies a transformation. ### Example $$ \mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 5 \\ 6 \end{bmatrix} $$ $$ \mathbf{A} \mathbf{v} = \begin{bmatrix} 1(5) + 2(6) \\ 3(5) + 4(6) \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up