# Windows Server Essential/Standard on Docker ### Windows Server 2019 Essential 試用版180天 產品金鑰: >NJ3X8-YTJRF-3R9J9-D78MF-4YBP4 ### Windows Server 2019 Standard 評估版180天 直接下載iso安裝即可 *Setting admin password(標點符號&&英文大小寫required)* --- ## Docker on Windows Server 2019 ### Docker Desktop for Windows ![](https://i.imgur.com/WOQEtJg.png) 直接安裝即可 內建可以一鍵安裝/開啟k8s System Requirements: :::spoiler * Windows 10 64-bit: Pro, Enterprise, or Education (Build 16299 or later). For Windows 10 Home, see Install Docker Desktop on Windows Home. * Hyper-V and Containers Windows features must be enabled. * The following hardware prerequisites are required to successfully run Client Hyper-V on Windows 10: * 64 bit processor with Second Level Address Translation (SLAT) * 4GB system RAM * BIOS-level hardware virtualization support must be enabled in the BIOS settings ::: ### 使用 OneGet 提供者 PowerShell 模組安裝 Docker(Docker for Windows Server) https://github.com/OneGet/MicrosoftDockerProvider ![](https://i.imgur.com/qbGVoxA.png) :::danger *<< Essential版不可行 缺乏Windows Container Feature >>* ::: ![](https://i.imgur.com/VUnRvlr.png) 先到Server Manager > Dashboard > Add roles and features 點選到Features時勾選 Containers 接著會開始install 然後Restart-Computer #### 安裝 OneGet PowerShell 模組 ``` Install-Module -Name DockerMsftProvider -Repository PSGallery -Force ``` #### 安裝 OneGet docker provider ``` Import-Module -Name DockerMsftProvider -Force Import-Packageprovider -Name DockerMsftProvider -Force ``` #### Install Docker Upgrade to the latest version of docker: ``` Install-Package -Name docker -ProviderName DockerMsftProvider -Verbose -Update ``` --- ## Local Environment for Tensorflow GPU ### Software/Hardware Requirements (照順序安裝) - TESLA DRIVER FOR WINDOWS ![](https://i.imgur.com/x0kgmCn.png) :::spoiler > Version: 451.48 WHQL Release Date: 2020.7.7 Operating System: Windows Server 2016, Windows Server 2019 CUDA Toolkit: 11.0 Language: English (US) File Size: 380.8 MB ::: - Visual Studio Community 2019-16.6.4 ![](https://i.imgur.com/NZGZtFV.png) :::danger 記得在Workloads時要選擇Desktop development with C++ ::: - CUDA Toolkit 10.2/11.2 :::spoiler >Operating System: Windows Architecture: x86_64 Version: Server 2019 ::: - cuDNN (NVIDIA Developer Program Membership Required) ![](https://i.imgur.com/YYpC0Wx.png) :::spoiler >Download cuDNN v7.6.5 (November 18th, 2019), for CUDA 10.2 Library for Windows, Mac, Linux, Ubuntu and RedHat/Centos(x86_64architecture cuDNN Library for Windows 10 ::: 下載回cuDNN是一個壓縮檔案 解壓縮後把裡面三個資料夾的東西複製到C:/Program Files/NVIDIA GPU Computin Toolkit/CUDA/v(版本)/ 相對應的地方 ![](https://i.imgur.com/FgNsXjz.png) #### nvidia-smi register to PATH control panel > System and Security > System > Advanced system settings > Advanced > Environment Variables > User variables for Administor > Double Click Path > New: C:\Program Files\NVIDIA Corporation\NVSMI ``` > cmd nvidia-smi ``` for checking gpu condition immediately :::warning *docker裡用nvidia-smi測不到gpu ::: - Anaconda3-2020.02 Windows x86_64 *測試時 用python3.5跑不起來 改用python3.7就成功* :::spoiler > tensorflow-gpu v2.1.0 python v3.7.6final.0 conda v4.8.3 ::: ### conda env command for tensorflow gpu ```python conda create -n tensorflow-gpu pip python=3.7 ``` ```python activate tensorflow-gpu ``` ```python pip install tensorflow-gpu ``` ```python conda install -c anaconda ipykernel ```