--- tags: metric, memo --- # Conditions of Convergence ## Claim Assume $\theta_0$ is the unique parameter that minimizes $Q$. If $Q$ is not continuous and the parameter space $\Theta$ is not compact, then the below statement may not hold: Given any $\varepsilon>0$, $| \theta_0 - \theta|>\varepsilon \implies Q(\theta_0) > Q(\theta) + \delta$ for some $\delta>0$. ## Counterexamples 1. $$ Q(x)= \begin{cases} x, \text{ if } x \le 1\\ \frac{1}{x}, \text{ if} x > 1\\ \end{cases} $$ If $x \in [0,\infty)$, then $x=0$ is the minimizer, but the statement is failed. 2. $$ Q(x)= \begin{cases} 0 , \text{ if } x=0 \\ \frac{1}{n}, \text{ if } x = \frac{m}{n} \text{ is irreducible fraction}\\ 1, \text{ Otherwise}\\ \end{cases} $$ If $x \in [-\varepsilon, \varepsilon]$, then $x=0$ is the minimizer, but the statement is failed.