--- tags: metrics, core, group --- $$ % My definitions \def\ve{{\varepsilon}} \def\dd{{\text{ d}}} \newcommand{\dif}[2]{\frac{d #1}{d #2}} % for derivatives \newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} % for partial derivatives \def\R{\text{R}} $$ # Q1 Consistency: CLT CMT Slutsky Asymptotic distribution: Delta method The expectations exist, so we can use WLLN. WLLN: $$ \bar{X} \to_p exp^{\alpha \beta},\\ \bar{Y} \to_p exp^{\alpha}, $$ Log is a continuous function, so we can use CMT. CMT: $$ \log(\bar{X}) \to_p \alpha \beta\\ \log(\bar{Y}) \to_p \alpha \\ $$ Combine the above conditions, we can use Slutsky: $$ \frac{\log(\bar{X})}{\log(\bar{Y})} \to_p \beta $$ Let $Z =[\bar{X}, \bar{Y}]'$ and $\theta = [exp^{\alpha \beta}, exp^{\alpha}]'$ CLT: $$ \sqrt{n} (z - \theta) \to_d N(0, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) $$ Define $h(x, y) = \log x / \log y$ Delta method: $$ \sqrt{n} (h(z) - h(\theta)) \to_d N(0, \nabla h(\theta)'\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\nabla h(\theta)), $$ where $$ \nabla h(\theta) = [\frac{1}{x \log y}, \frac{-\log x}{y (\log y)^{2}}]' $$ # Q2 ## a Let $f(X) = m(X; \theta), \theta \neq \theta^*$ $$ E((Y-f(X))^2) = E( (Y-E(Y|X) + E(Y|X) - f(X))^2 ) \\ = E( (Y-E(Y|X)^2) + E( (E(Y|X)- f(X))^2 ) - 2 E( (Y-E(Y|X)) (E(Y|X) - f(X)) ) $$ By LIE, $$ E((Y-f(X))^2) = E( (Y-E(Y|X)^2) + E( (E(Y|X)-f(X))^2 ) \ge E( (Y-E(Y|X)^2) $$ WTS $$ E((Y-f(X))^2) = E( (Y-E(Y|X)^2) + E( (E(Y|X)- f(X))^2 ) > E( (Y-E(Y|X)^2) $$ Since $\theta^*$ is unique $$ f(x) \neq E(Y|X) $$ $$ E( (E(Y|X)- f(X))^2 ) >0 $$ ## b The expectation of mean square error. ## c Delta method # Q3 $$ y_i = \begin{cases} 0 &\text{ if } x_i \beta + \epsilon < 0 \\ y_i^* &\text{ if } 0 \le x_i \beta + \epsilon \le 2 \\ -1 &\text{ if } x_i \beta + \epsilon >2 \end{cases} $$ $$ f(y;x, \beta) = \begin{cases} F(\frac{-x\beta}{\sigma}) &\text{ if } x_i \beta + \epsilon < 0\\ F(\frac{2-x \beta}{\sigma}) - F(\frac{-x\beta}{\sigma}) \\ 1-F(\frac{2-x\beta}{\sigma}) \end{cases} $$ $$ f(y;x, \beta) = [F(\frac{-x\beta}{\sigma})]^{1(y<0)} \times [F(\frac{2-x \beta}{\sigma}) - F(\frac{-x\beta}{\sigma})]^{1(0 \le y \le 2)} \times [1-F(\frac{2-x\beta}{\sigma})]^{1(y>2)} $$ log-likelihood : $\log f(y;x,\beta)$ See Peter's DQ9 # Q4 ## a ## b ## c zero subvector $H_0: \beta_2 = \beta_3 = \beta_4 = \dots = \beta_7 = 0$ $H_a:$ At least one slope coeffiient is not zero. Test statistic = $\frac{(2000-7)(R^2 - R^{2*})}{1-R^2}$ where $R^2 = 0.308, R{^*}=0$ ## d iii ## e collinearity