--- tags: metric, memo --- # Three-Stage Least Squares ## Setting We can combine SUR and IV estimator to estimate a systems of equations, which is Three-Stage Least Squares. Suppose we want to estimate $M$ equations with $T$ observations and each observation is i.i.d: $$y_i = Z_i \beta_i + U_i, \quad E(Z_i 'U_i)\neq 0, i=1,2,..,G$$ Let $K =\sum_{j=1}^M K_j$ as the number of all independent variables in this system, we can stack the vectors as: $y = \begin{pmatrix} y_1 \\ y_2 \\... \\ y_M\end{pmatrix}$: $T M \times 1$ matrix $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\... \\ \beta_M\end{pmatrix}$: $K \times 1$ matrix $U = \begin{pmatrix} U_1 \\ U_2 \\... \\ U_M\end{pmatrix}$: $TM \times 1$ matrix $X = \begin{pmatrix} Z_1 & 0 & ... & 0 \\ 0 & Z_2 & ... & 0 \\ . & . &... &.\\ 0 &... & 0 & Z_G\end{pmatrix}$ : $TM \times K$ matrix After stacking, we get $$y= Z \beta + U$$ To estimate $\beta_i$, we have a $T \times l$ matrix $X$ such that $E(X'U_i)=0, i=1,...,M$ and $l \ge max\{k_i\}$. We can use 2SLS to estimate $\beta_i$, that is $$\hat{\beta_i}_{2SLS}=(Z_i'P_X Z_i)^{-1} Z_i'P_X y_i$$ ## GLS Again, SUR could be a more efficient estimator. We using the following procedure to derive the estimator: $$(I_M \otimes X)'y =(I_M \otimes X)'Z\beta + (I_M \otimes X)' U$$ For the error terms, we can get: $$\Omega = V((I_M \otimes X)' U)=E((I_M \otimes X)' UU'(I_M \otimes X))=(I_M \otimes X') E(UU')(I_M \otimes X)\\ =(I_M \otimes X') \Sigma(I_M \otimes X) \\ =\Sigma \otimes X'X$$ Hence, $\Omega^{-1} = \Sigma^{-1} \otimes (X'X)^{-1}.$ By the formula of GLS, we can get: $$\hat{\beta}_{GLS} = [ Z'(I_M \otimes X)\Omega^{-1}(I_M \otimes X)'Z]^{-1} Z'(I_M \otimes X)\Omega^{-1}(I_M \otimes X)'y\\ = [ Z'(I_M \otimes X)(\Sigma^{-1} \otimes (X'X)^{-1})(I_M \otimes X')Z]^{-1} Z'(I_M \otimes X)(\Sigma^{-1} \otimes (X'X)^{-1})(I_M \otimes X')y\\ = [ Z'(\Sigma^{-1} \otimes X(X'X)^{-1}X)Z]^{-1} Z'(\Sigma^{-1} \otimes X(X'X)^{-1}X)'y\\ =(Z'(\Sigma^{-1} \otimes P_X)Z)^{-1}Z'(\Sigma^{-1} \otimes P_X)y$$ Let $[\sigma^{ij}] =\Sigma^{-1}$, we can rewrite the GLS estimator as: $$\hat{\beta}_{GLS} = \begin{pmatrix}\sigma^{11} (Z_1' P_X Z_1) & \sigma^{12} (Z_1' P_X Z_2) & ... & \sigma^{1M} (Z_1' P_X Z_M) \\ \sigma^{21} (Z_2' P_X Z_1) & \sigma^{22} (Z_2' P_X Z_2) & ... & \sigma^{2M} (Z_2' P_X Z_M) \\ . & .&...& . \\ \sigma^{M1} (Z_M' P_X Z_1) & \sigma^{M2} (Z_M' P_X Z_2) & ... & \sigma^{MM} (Z_M' P_X Z_M)\end{pmatrix}^{-1} \begin{pmatrix}Z'_1(\sum_j \sigma^{1j} P_X y_j) \\ Z'_2(\sum_j \sigma^{2j} P_X y_j) \\... \\Z'_M(\sum_j \sigma^{Mj} P_X y_j) \end{pmatrix}.$$ ### Feasible estimator Again, we need to use 2SLS to estimate $\Sigma$,$\hat{\Sigma}=[\hat{\sigma}_{ij}]$: $$\hat{\sigma}_{ij}=\frac{1}{T}(y_j-X_j \hat{\beta}_j)'(y_j-X_j \hat{\beta}_j)$$ where $\hat{\beta}$ is the 2SLS estimator. Baltagi uses an adjusted estimator of $\hat{\sigma}_{ij}$: $$\hat{\sigma}_{ij} = \sum_{t=1}^T \frac{e_{it}e_{jt}}{(T-k_i)^{0.5}(T-k_j)^{0.5}}=\hat{s}_{ij}$$ where $e_{it}$ is the 2SLS residual of $i$ equation on $t$ observation, $k_i$ is the number of independent verables in equation $i$, and $\hat{s}_{ij}$ is Baltagi's notation. $$\hat{\beta}_{3SLS} = \\ =(Z'(\hat{\Sigma}^{-1} \otimes P_X)Z)^{-1}Z'(\hat{\Sigma}^{-1} \otimes P_X)y$$ ## When 3SLS equal 2SLS ### Uncorrelated between Equations If $\Sigma$ is diagonal, i.e., $\sigma_{ij}=0$ if $i \neq j$, than $\Sigma^{-1}=diag[1/\sigma_{ii}]$ is also a diagonal matrix and $\hat{\beta}_{3SLS} =\hat{\beta}_{2SLS}$. The proof is similar to the proof of SUR. ### Just-identified in every equation If $X'Z_i$ is square and invertible for each $i$, then $\hat{\beta}_{3SLS} =\hat{\beta}_{2SLS}$. In this case $$ Z'(I_M \otimes X)\\ = \begin{pmatrix}Z_1' & 0 & 0 & ... & 0 \\ 0 & Z_2' & 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & Z_M'\end{pmatrix} \begin{pmatrix} X & 0 & 0 & ... & 0 \\ 0 & X & 0 & ... & 0 \\ 0 & 0 & 0 & ... & 0 \\ 0 & 0 & 0 & ... & X \\ \end{pmatrix} \\ = \begin{pmatrix}Z_1'X & 0 & 0 & ... & 0 \\ 0 & Z_2'X & 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & Z_M'X\end{pmatrix} \\ =diag[Z_i'X]$$ Similarly, $$(I_M \otimes X')Z =diag[(X'Z_i)]$$ We also know the form of the inverse matrix: $$[(I_M \otimes X')Z]^{-1}\\ = \begin{pmatrix}X'Z_1 & 0 & 0 & ... & 0 \\ 0 & X'Z_2 & 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & X'X_M\end{pmatrix}^{-1} \\ = \begin{pmatrix}(X'Z_1)^{-1} & 0 & 0 & ... & 0 \\ 0 & (X'Z_2)^{-1} & 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & (X'Z_M)^{-1}\end{pmatrix}\\ =diag[(X'Z_i)^{-1}]$$ Hence, $$\hat{\beta}_{3SLS} = [ Z'(I_M \otimes X)(\Sigma^{-1} \otimes (X'X)^{-1})(I_M \otimes X')Z]^{-1} Z'(I_M \otimes X)(\Sigma^{-1} \otimes (X'X)^{-1})(I_M \otimes X')y\\ = [ diag[Z_i'X](\Sigma^{-1} \otimes (X'X)^{-1})diag[X'Z_i]]^{-1} diag[Z_i'X](\Sigma^{-1} \otimes (X'X)^{-1})diag[X'y]\\ = [diag[(X'Z)^{-1}(\Sigma \otimes (X'X))diag[(Z_i'X)^{-1}] diag[Z_i'X](\Sigma^{-1} \otimes (X'X)^{-1})diag[X'y]\\ = diag[(X'Z)^{-1} diag[X'y]\\ = \begin{pmatrix}(X'Z_1)^{-1} & 0 & 0 & ... & 0 \\ 0 & (X'Z_2)^{-1} & 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & (X'Z_M)^{-1}\end{pmatrix}\\ \times \begin{pmatrix}X'y_1 & 0 & 0 & ... & 0 \\ 0 & X'y_2 & 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & X'y_M\end{pmatrix} \\ = \begin{pmatrix}(X'Z_1)^{-1}X'y_1 & 0 & 0 & ... & 0 \\ 0 & (X'Z_2)^{-1} X'y_2& 0 & ... & 0\\ 0 & 0 & 0 & ... & 0\\ 0 & 0 & 0 & ... & (X'y_M)^{-1}X'y_M\end{pmatrix} \\ =\hat{\beta}_{2SLS}$$