--- tags: macro --- # Simple Bellman ## The Question Maximize the lifetime log utility with Cobb-Douglas production function and fully depreciation. \begin{align*} \max_{\{c_t, k_t\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t \log(c_t)\\ \text{s.t. }c_t +k_t = Ak_{t-1}^\alpha \end{align*} The corresponding Bellman equation is \begin{align*} v (k) =\max_{c, k'} \{ \log(c) + \beta v(k') \}\\ \text{s.t. }c = Ak^\alpha - k' \end{align*} ## Guess and Verify Substitute the budget constraint into the objective function, we have \begin{align*} v (k) =\max_{k'} \{ \log(Ak^\alpha - k') + \beta v(k') \} \\ \end{align*} Guess $v(k) = a + b \log k$ and plug it into the Bellman equation, $$ v (k) =\max_{k'} \{ \log(Ak^\alpha - k') + \beta (a + b\log k') \} \\ $$ The first-order condition of the right-hand side is, $$ \frac{1}{Ak^\alpha - k'} = \frac{\beta b}{k'} \implies k' = \frac{\beta b }{1 + \beta b} Ak^\alpha, $$ which implies the agent will invest/save a constant portion of their income. Plug it into the Bellman equation, \begin{align*} v(k) &= \log \left( \frac{1}{1+\beta b} Ak^\alpha\right) + \beta [a + b \log (k')] \\ &= \log \left( \frac{1}{1+\beta b} Ak^\alpha \right)+ \beta [a + b \log (\frac{\beta b }{1 + \beta b} Ak^\alpha)] \\ &=a + b \log k \end{align*} Let's match the coefficients. For the coefficient of $\log k$ $$ b = \alpha + \beta b \alpha \implies b = \frac{\alpha}{1-\alpha \beta}. $$ $a$ is also solvable, which is a mess. The more important is the policy function, $$ k' = \frac{\beta b }{1 + \beta b} Ak^\alpha = \alpha \beta Ak^\alpha. $$