--- tags: macro, memo,public --- # Optimal Growth Model ## The Question Maximize the lifetime utility with utility function $u$, production function $f$, and depreciation rate $\delta$. Given $k_0$, the problem is, \begin{gather*} \max_{\{c_t, k_t\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t u(c_t)\\ \text{s.t. }c_t +k_{t+1} = f(k_{t}) + (1 - \delta) k_{t} \end{gather*} ## The Solution ### Euler equation Substitute the budget constraint into the objective function, we have \begin{gather*} \max_{\{k_t \}_{t=1}^\infty} \sum_{t=0}^\infty \beta^t u \left (f(k_{t}) + (1 - \delta) k_{t} - k_{t+1} \right )\\ \end{gather*} The first-order condition of $k_t$ is $$ \beta^t u' \left (f(k_{t}) + (1 - \delta) k_{t} - k_{t+1} \right ) \left ( f'(k_t) + 1 -\delta \right) = \beta^{t-1} u' \left (f(k_{t-1}) + (1 - \delta) k_{t-1} - k_{t} \right ) $$ Simplify this Euler equation. We get a familiar form, $$ \beta u' \left (c_{t} \right ) \left ( f'(k_t) + 1 -\delta \right) = u' \left (c_{t-1} \right ). $$ ### Steady state Under steady state, $c_t = c_{t+1}=c$, $k_t = k_{t+1}=k$, and $u'(c_t) =u'(c_{t+1})$. $$ \beta \left ( f'(k) + 1 -\delta \right) = 1. $$ We still have the resource constraint, $$ c = f(k) - \delta k. $$ ### Phase Diagram We can plot the above two equations on the plane of $k, u'(c)$. For the Euler equation, assuming $f'(k)>0, f''(k)<0$, there is an unique $k$ given any pair of $(\beta, \delta)$. However, this equation is irrelevant to $c$, so this equation corresponds to a vertical line in the plot. For the resource constraint, assuming $u'(c)>0$, the line should be a negative slope when $c$ increase, that is, $f'(k) - \delta >0$. With the assumption of the production function, $f'(k) - \delta <0$ when $k$ is large enough. However, the rational agent will not accumulate that amount of capital. Hence, the resource constraint corresponds to a negative line with a small $k$ in the graph. In the below diagram, the black curve corresponds to the resource constraint, and the two blue lines correspond to the Euler equation with different values of $\beta$. Since $f''(k)<0$, the blue line will move rightward when $\beta$ increases. ![](https://hackmd.io/_uploads/r10vTa0ws.png) #### Directions Given any pair $(k_t, u'(c_t))$, by the Euler equation, \begin{align} u'(c_{t+1}) > u'(c_t) &\iff \beta u'(c_{t+1}) > \beta u'(c_t) \\ &\iff \frac{u'(c_t)}{( f'(k_{t+1}) + 1 -\delta )} > \beta u'(c_t) \\ & \iff \frac{1}{( f'(k_{t+1}) + 1 -\delta )} > \beta \\ & \iff 1 > \beta ( f'(k_{t+1}) + 1 -\delta ). \\ \end{align} Let $k^{SS}$ be the capital at steady-state. We know $$ k > k^{SS} \iff f'(k) < f'(k^{SS}) \iff 1 > \beta ( f'(k) + 1 -\delta ). $$ Hence, when $k > k^{SS}$, $u'(c)$ will increase, vice versa. On the other hand, $k_{t+1}$ will increase if $c_t < f(k_{t}) - \delta k_t$. Since $u''<0$, for the pair $(k_t, u'(c_t))$ above the ARC, $k_{t+1}$ will increse, vice versa.