--- tags: metric, memo, public --- # Instrumental Variable ## Hansen's Notation $$Y_1 = X \beta + u$$ $$X = Z \Gamma + e$$ $$Y_1 = Z \lambda + \varepsilon$$ * $Y_1$: $n \times 1$ matrix * $X$: $n \times k$ matrix * $Z$: $n \times l$ matrix * $\Gamma$: $l \times k$ matrix * $\lambda$: $l \times 1$ matrix $$X'u \neq 0, Z'u =0, Z'e =0, Z' \varepsilon =0$$ Some basic algebra, $$Z'u =0 = Z'(Y_1 - X \beta )$$ $$Z'Y_1 = Z 'X \beta $$ If $l = k$, we may find the inverse of $Z 'X$, and calculate the **instrumental variables(IV)** estimator, $$\hat{\beta}_{iv}=(Z'X)^{-1}Z'Y_1$$ Another approach is pluggin in the equations, $$Y_1 = X \beta + u = (Z \Gamma + e) \beta + u = Z \Gamma \beta + e \beta + u = Z \lambda + \varepsilon$$ $$\lambda = \Gamma \beta$$ If $l = k$, we may find $\Gamma^{-1}$ and $\beta = \Gamma^{-1}\lambda$. In this case, we call the estimator **Indirect Least Suqres(ILS)**, which is equivalen to the instrumental variables(IV) estimators, that is $$\hat{\beta}_{ils} = \hat{\Gamma}^{-1}\hat{\lambda} \\= ((Z'Z)^{-1}(Z'X))^{-1}((Z'Z)^{-1}(Z'Y_1))\\=(Z'X)^{-1}Z'Y_1=\hat{\beta}_{iv}$$ If $l \neq k$, we can use $$Y_1 = X \beta + u = (Z \Gamma + e) \beta + u = Z \Gamma \beta + e \beta + u$$ If we know $\Gamma$, then we have $$\hat{\beta}=[(Z \Gamma)'(Z \Gamma)]^{-1}(Z \Gamma)' Y_1\\=(\Gamma 'Z' Z \Gamma)^{-1}\Gamma Z' Y_1$$ Using $\hat{\Gamma}=(Z'Z)^{-1} Z'X$, we can have a feasible **two-stage-least squared (2SLS)** estimator, tha is $$\hat{\beta}_{2sls}=(\hat{\Gamma} 'Z' Z \hat{\Gamma})^{-1}\hat{\Gamma} Z' Y_1 \\= (X'Z(Z'Z)^{-1}Z'Z(Z'Z)^{-1} Z'X)^{-1} X' Z(Z'Z)^{-1} Z' Y_1\\=(X'Z(Z'Z)^{-1} Z'X)^{-1}X'Z (Z'Z)^{-1} Z' Y_1.$$ ## Baltalgi's Notation $$y_1 = Y_1 \alpha_1 + X_1 \beta_1 + u_1 = Z_1 \delta_1 + u_1$$ $$Y_1 = X \Gamma + e$$ $$y_1 = X \lambda + \varepsilon$$ * $y_1$: $T \times 1$ matrix * $Y_1$: $T \times g_1$ matrix * $X_1$: $T \times k_1$ matrix * $\alpha_1$: $g_1 \times 1$ matrix * $\beta_1$: $k_1 \times 1$ matrix * $Z_1$: $[Y_1, X_1]$ ,$T \times (g_1 + k_1)$ matrix * $\delta_1$: $[\alpha_1', \beta_1']$ ,$(g_1 + k_1) \times 1$ matrix * $X_2$: $T \times (k-k_1)$ matrix * $X$: $[X_1, X_2]$ ,$T \times k$ matrix $$X_1'u_1 \neq 0, Z'u =0, Z'e =0, Z' \varepsilon =0$$ We get $\widehat{Y}_1$ in the first stage and use it to estimate at the second stage, $$y_1 = \widehat{Y}_1 \alpha_1 + X_1 \beta_1 + w_1 = \widehat{Z}_1 \delta_1 + w_1$$ where $\widehat{Z}_1 =[\widehat{Y}_1, X_1]$ $$\widehat{\delta}_{1,2SLS} = (\widehat{Z}_1'\widehat{Z}_1)^{-1} \widehat{Z}_1'y_1 = (Z_1'P_X Z_1)^{-1}Z_1'P_X y_1$$ --- In other words, in the first stage, we use following equation to estimate $\widehat{Z}$, $$Z = X \Theta + \phi$$ we get $$\widehat{Z}=P_X Z$$ In the second stage, we use the following equation to estimate $\widehat{\delta}_{1}$, $$y_1 = \widehat{Z} \delta_1 + u_1$$ **Note:** For some reasons, scholars call the estimator under just-idnetifed case as **instrumental variables(IV)** estimator and the estimator under over-identified case as **two-stage-least squared (2SLS)** estimator. However, 2SLS estimator is just the generalized version of IV estimator. In general, we use these two terms interchangably. ## Overidentification Test Suppose that the number of instumental variables is greater than the number of dependent variables, that is , $l > (g_1 +k_1)$ in Baltagi's notation, then we can test following overidentification test: $$H_0: y_1 = Z_1 \delta_1+ u_1, \quad E(W'u)=0$$ $$H_1: y_1 = Z_1 \delta_1 + W^* \gamma + u_1\quad E(W'u)=0$$ where $W$ is the instrumental matrix and $W^*$ is a constructed matrix such that $[P_W X \quad W^*]$ can span the same linear space spanned by $W$. * $W$: $T \times l$ instrument matrix * $W^*$: $T \times (l-k_1 -g_1)$ matrix An alternative representaion of the hypothesis is: $$H_0: y_1 = P_W Z_1 \delta_1+ u_1, \quad E(W'u)=0$$ $$H_1: y_1 = P_W Z_1 \delta_1 + W^* \gamma + u_1\quad E(W'u)=0$$ Based on the hypothesis, we can implement a F test as: $$F = \frac{RRSS^* - URSS^*/(l-(g_1 + k_1))}{URSS/(T-l)} \sim F_{l-(g_1 + k_1), T-l}$$ $RRSS^* = (y_1 - P_W Z_1 \widehat{\delta}_1)'(y_1 - P_W Z_1 \widehat{\delta}_1)$ $URSS^* = (y_1 - P_W Z_1 \widehat{\delta}_1 - W^* \widehat{\gamma})'(y_1 - P_W Z_1 \widehat{\delta}_1 - W^* \widehat{\gamma})$ $URSS = (y_1 - Z \widehat{\delta}_{1, 2SLS}- W^* \widehat{\gamma})'(y_1 - Z \widehat{\delta}_{1, 2SLS}- W^* \widehat{\gamma})$ By construction, $[P_W X \quad W^*]$ can span the same linear space as $W$, $$URSS^*= [(I-P_W)y_1]'[(I-P_W)y_1] =y_1 \bar{P}_W y_1$$ We also have, $$RRSS^* = [(I-P_{P_W Z})y_1]'[(I-P_{P_W Z})y_1] =y_1' \bar{P}_{\hat{Z}} y_1$$ **Claim:** $RRSS^* - URSS^* = \|(P_W(I-P_{P_W Z}))y_1\|^2 = \|(P_W(y_1 - Z \widehat{\delta}_1)\|^2$ First, $\|(P_W(y_1 - Z \widehat{\delta}_1)\|^2 = \|(P_W(y_1 - \hat{Z} \widehat{\delta}_1)\|^2=\|P_W(I-P_{P_W Z})y_1\|^2$ We can observe that $$(I-P_w)(P_W(I-P_{P_W Z})=0 $$ and $$(I-P_w)+(P_W(I-P_{P_W Z})=I-P_{P_W Z}$$ Therefore, the equation hold by the Pythagorean theorem. Moreover, we can use $\chi^2$ statistic to test overidentifiction restriction. $$\frac{RRSS^* - URSS^*}{\widehat{\sigma}^2} = \frac{\|(P_W(y_1 - Z \widehat{\delta}_1)\|^2}{\|y_1 - Z \widehat{\delta}_1\|^2/n} \sim \chi^2_{l-(g_1 + k_1)}$$ In fact, this statistic is based on the following hypothesis: $$H_0: y_1 - Z_1 \hat{\delta}_1 = u$$ $$H_1: y_1 - Z_1 \hat{\delta}_1 = W \Gamma+ u$$ ## DWH Tests The **Durbin-Wu-Hausman tests** are aimed to test the exogenouity of the OLS model. That is $$H_0: y_1 = Z_1 \delta +u, \quad E(Z'u)=0$$ $$H_1: y_1 = Z_1 \delta +u, \quad E(Z'u)\neq 0, E(W'u)=0$$ Let $\hat{\delta}_{OLS}$ and $\hat{\delta}_{2SLS}$ are the estimations based on OLS and 2SLS, respectively. Under $H_0$, this two estimations should be very close, so we can use their difference to construct test statistics. $$\hat{q} = \hat{\delta}_{2SLS} - \hat{\delta}_{OLS} \\ =(X'P_W X)^{-1}X'P_W y - (X'X)^{-1}X'y \\ =(X'P_W X)^{-1}(X'P_W y -X'P_W X(X'X)^{-1}X'y)\\ =(X'P_W X)^{-1}X'P_W (I - X(X'X)^{-1}X')y\\ =(X'P_W X)^{-1}X'P_W (I -P_X)y\\ =(X'P_W X)^{-1}X'P_W M_Xy$$ Under $H_0$, we have $$\hat{q}'(Var(\hat{q}))^{-1}\hat{q} \sim \chi^2_{g_1+k_1}$$ Meanwhile, $\hat{q}$ close to $0$ or not only depends on $X'P_W M_Xy$. $Z_1=[Y_1, X_1]$ and only the $Y_1$ would affect the estimation, so we only need to test whether $Y_1'P_W M_X y$ is different from $0$. It is equivalent to test the following hypothesis: $$H_0: y_1 = X \delta +u$$ $$H_1: y_1 = X\delta +P_W Y_1 \gamma +u$$ By the FWL theorem, $\hat{\gamma}$ is just regress $M_X y$ on $M_X P_W Y$, that is $$\hat{\gamma}=(Y'P_W M_X P_W Y )^{-1}Y'P_W M_X y$$ and the assocatied F test is $$\frac{(RRSS-URSS)/g_1}{URSS/(T-2 g_1 -k_1)} \sim F_{g_1, (T -2 g_1 - k_1)}$$