# CLT and Delta method ## CLT The formal asymptotic equation, $$ \sqrt{n} (\hat{\beta} - \beta) \sim_d N(0, V(\hat{\beta})) $$ Informal asymptotic equation, $$ (\hat{\beta} - \beta) \sim_d N(0, \frac{1}{n}V(\hat{\beta})) $$ However, we mostly report $\hat{\beta}$ and estimated variance as $$ \hat{\sigma^2} = \frac{1}{n}\widehat{V(\hat{\beta})}. $$ ## Delta method The formal delta method, $$ \sqrt{n} (h(\hat{\beta}) - h(\beta)) \sim_d N \left(0, h'(\beta)^T V(\hat{\beta}) h'(\beta) \right) $$ Informal delta method, $$ (h(\hat{\beta}) - h(\beta)) \sim_d N \left (0, \frac{1}{n} h'(\beta)^T V(\hat{\beta}) h'(\beta) \right) $$ The estimated variance for $h(\hat{\beta})$ should be $$ \frac{1}{n} h'(\hat{\beta})^T \widehat{V(\hat{\beta})} h'(\hat{\beta}) = h'(\hat{\beta})^T \hat{\sigma^2} h'(\hat{\beta}) $$ ## Why informal Formally, $$ (\hat{\beta} - \beta) \sim_d 0 $$ is a constant without variance.