--- tags: metric, memo, public --- # Seemingly Unrelated Regressions ## Kronecker product Let $A=[a_{ij}]$ be a $m \times n$ matrix. We define the Kronecker product as: $$A \otimes B = \begin{pmatrix} a_{11} B & a_{12}B & ... & a_{1n}B \\ a_{21} B & a_{22}B & ... & a_{2n}B \\ . & . & ... & . \\ a_{m1} B & a_{m2}B & ... & a_{mn}B\end{pmatrix}$$ ### Properties $(A \otimes B)(C \otimes D) = (AC)\otimes (BD)$ $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$ $(A \otimes B)^{\top}=A^{\top} \otimes B^{\top}$ ## Setting Suppose we want to estimate $M$ regressions and each regression have $T$ observations, then we can implement Seemingly Unrelated Regressions. That is estimating $M$ equations with $T$ observations and each observation is i.i.d: $$y_i = X_i \beta_i + U_i, i=1,2,..,M$$ Let $K =\sum_{j=1}^M K_j$ as the number of all independent variables in this system, we can stack the vectors as: $y = \begin{pmatrix} y_1 \\ y_2 \\... \\ y_M\end{pmatrix}$: $T M \times 1$ matrix $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\... \\ \beta_M\end{pmatrix}$: $K \times 1$ matrix $U = \begin{pmatrix} U_1 \\ U_2 \\... \\ U_M\end{pmatrix}$: $TM \times 1$ matrix $X = \begin{pmatrix} X_1 & 0 & ... & 0 \\ 0 & X_2 & ... & 0 \\ . & . &... &.\\ 0 &... & 0 & X_M\end{pmatrix}$ : $TM \times K$ matrix After stacking, we get $$y= X \beta + U$$ Let $\Omega$ as the covariance matrix of $U$. Following the assumption of i.i.d, we have $$\Omega = \Sigma \otimes I_T$$ Where $\Sigma$ is the covariance matrix between differenent linear equations. ## OLS and GLS We have $$\hat{\beta}_{OLS} = (X'X)^{-1}X'y \\ = \begin{pmatrix} (X_1' X_1)^{-1}X'_1y_1 \\ (X_2' X_2)^{-1}X'_2y_2 \\ (X_3' X_3)^{-1}X'_3y_3 \\ ... \\ (X_M' X_M)^{-1}X'_M y_M \end{pmatrix}.$$ If we know $\Sigma$, we can calculate the GLS as: $$\hat{\beta}_{GLS} = (X' \Omega^{-1} X)^{-1} X' \Omega^{-1}y \\ = (X' (\Sigma \otimes I_T)^{-1} X)^{-1} X' (\Sigma \otimes I_T)^{-1}y \\ = (X' (\Sigma ^{-1} \otimes I_T) X)^{-1} X' (\Sigma ^{-1} \otimes I_T)y.$$ Let $[\sigma^{ij}] =\Sigma^{-1}$, we can rewrite the GLS estimator as: $$\hat{\beta}_{GLS} = \begin{pmatrix}\sigma^{11} (X_1'X_1) & \sigma^{12} (X_1'X_2) & ... & \sigma^{1M} (X_1'X_M) \\ \sigma^{21} (X_2'X_1) & \sigma^{22} (X_2'X_2) & ... & \sigma^{2M} (X_2'X_M) \\ . & .&...& . \\ \sigma^{M1} (X_M'X_1) & \sigma^{M2} (X_M'X_2) & ... & \sigma^{MM} (X_M'X_M)\end{pmatrix}^{-1} \begin{pmatrix}X'_1(\sum_j \sigma^{1j}y_j) \\ X'_2(\sum_j \sigma^{2j}y_j) \\... \\X'_M(\sum_j \sigma^{Mj}y_j) \end{pmatrix}.$$ ### Explanations SUR is just the GLS under a system of equations. As we know, GLS is more efficient than OLS in general, so SUR could be a better estimator under this setting. ## When SUR equals OLS ### Uncorrelated between Equations If $\Sigma$ is diagonal, i.e., $\sigma_{ij}=0$ if $i \neq j$, than $\Sigma^{-1}=diag[1/\sigma_{ii}]$ is also a diagonal matrix and $\hat{\beta}_{GLS} =\hat{\beta}_{OLS}$. $$\Sigma^{-1}= \begin{pmatrix} \sigma_{11}^{-1} & 0 & 0 & ... & 0\\ 0 & \sigma_{22}^{-1} & 0 & ... & 0 \\ & & ...\\ 0 & 0 & ... & 0 &\sigma_{MM}^{-1} \end{pmatrix}$$ $$\hat{\beta}_{GLS} = \begin{pmatrix}\sigma_{11}^{-1} (X_1'X_1) & 0 & ... & 0 \\ 0 & \sigma_{22}^{-1} (X_2'X_2) & ... & 0 \\ & &...& \\ 0 & 0 & ... & \sigma_{MM}^{-1} (X_M'X_M)\end{pmatrix}^{-1} \begin{pmatrix}X'_1( \sigma_{11}^{-1}y_1) \\ X'_2( \sigma_{22}y_2) \\ ... \\ X'_M( \sigma_{MM}^{-1}y_M) \end{pmatrix}\\ =\begin{pmatrix}\sigma_{11} (X_1'X_1))^{-1} & 0 & ... & 0 \\ 0 & \sigma_{22} (X_2'X_2))^{-1} & ... & 0 \\ & &...& \\ 0 & 0 & ... & \sigma_{MM} (X_M'X_M)^{-1}\end{pmatrix} \begin{pmatrix}\sigma_{11}^{-1}X'_1 y_1 \\ \sigma_{22}^{-1} X'_2 y_2 \\ ... \\ \sigma_{MM}^{-1} X'_M y_M \end{pmatrix}\\ = \begin{pmatrix} (X_1' X_1)^{-1}X'_1y_1 \\ (X_2' X_2)^{-1}X'_2y_2 \\ (X_3' X_3)^{-1}X'_3y_3 \\ ... \\ (X_M' X_M)^{-1}X'_M y_M \end{pmatrix} \\ = (X'X)^{-1}X'y \\ =\hat{\beta}_{OLS}.$$ ### Identical Regressors If $X_j = X_0, j=1, ..., M$, than $X = I_M \otimes X_0$ and $\hat{\beta}_{GLS} =\hat{\beta}_{OLS}$. $$\hat{\beta}_{GLS} = (X' (\Sigma ^{-1} \otimes I_T) X)^{-1} X' (\Sigma ^{-1} \otimes I_T)y \\ = ((I_M \otimes X_0)' (\Sigma ^{-1} \otimes I_T) (I_M \otimes X_0))^{-1} (I_M \otimes X_0)' (\Sigma ^{-1} \otimes I_T)y \\ = (\Sigma^{-1} \otimes X_0'X_0)^{-1}\Sigma^{-1} \otimes X_0'y\\ = (I_M \otimes (X_0'X_0)^{-1}X_0') \begin{pmatrix}y_1 \\y_2 \\... \\ y_M\end{pmatrix} \\ =\begin{pmatrix} (X_0' X_0)^{-1}X'_0y_1 \\ (X_0' X_0)^{-1}X'_0y_2 \\ (X_0' X_0)^{-1}X'_0y_3 \\ ... \\ (X_0' X_0)^{-1}X'_0 y_M \end{pmatrix}\\ =\begin{pmatrix} (X_1' X_1)^{-1}X'_1y_1 \\ (X_2' X_2)^{-1}X'_2y_2 \\ (X_3' X_3)^{-1}X'_3y_3 \\ ... \\ (X_M' X_M)^{-1}X'_M y_M \end{pmatrix}\\ =\hat{\beta}_{OLS}.$$ ## Feasible SUR A simple way to estimate $\Sigma$ is $\hat{\Sigma}=[\hat{\sigma}_{ij}]$: $$\hat{\sigma}_{ij}=\frac{1}{T}(y_i-X_i \hat{\beta}_i)'(y_j-X_j \hat{\beta}_j)$$ where $\hat{\beta}$ is the OLS estimator. A summation notation of $\hat{\sigma}_{ij}$ is: $$\hat{\sigma}_{ij} = \frac{1}{T}\sum_{t=1}^T e_{it} e_{jt}=\hat{s}_{ij}$$ where $e_{it}$ is the OLS residual of $i$ equation on $t$ observation and $\hat{s}_{ij}$ is Baltagi's notation. $\hat{\Sigma}$ is a consistent but biased estimator of ${\Sigma}$. Hence, the feasible SUR is: $$\hat{\beta}_{SUR} = \hat{\beta}_{FGLS} \\ = (X' (\hat{\Sigma} ^{-1} \otimes I_T) X)^{-1} X' (\hat{\Sigma} ^{-1} \otimes I_T)y.$$ ## Test the Covariance Matrix We can test whether $\Sigma$ is a diagonal matrix. $H_0$: $\Sigma$ is diagonal $$LM = T \sum_{i=2}^M \sum_{j=1}^{i-1} r_{ij}^2$$ $$r_{ij} = \frac{\hat{s}_{ij}}{(\hat{s}_{ii}\hat{s}_{jj})^{0.5}} $$ under $H_0$, $$\lambda_{LM} = LM \sim \chi^2_{M(M-1)/2}$$