--- tags: metric, memo, public --- # Delta Method ## Delta Method (first order) Let $Y_n$ be a sequence of random variables. For a given function $g$ and a specific value of $\theta$, suppose that $g'(\theta)$ exists and is not $0$. If $$ \sqrt{n} (Y_n - \theta) \to^d N(0, \sigma^2), $$ then $$ \sqrt{n} [g(Y_n) - g(\theta)] \to^d N(0, \sigma^2[g'(\theta)]^2). $$ ## Delta Method (second order) Let $Y_n$ be a sequence of random variables. For a given function $g$ and a specific value of $\theta$, suppose that $g'(\theta)=0$, $g''(\theta)$ exists and is not $0$. If $$ \sqrt{n} (Y_n - \theta) \to^d N(0, \sigma^2), $$ then $$ n [g(Y_n) - g(\theta)] \to^d \sigma^2 \frac{g''(\theta)}{2} \chi^2_1 . $$ ## Delta Method (Denis' version) Suppose that $X_n \to^d X$ and $g(·)$ is differentiable at $a$, $b_n \to 0$. Then $$ \frac{g(a + b_n X_n) - g(a)}{b_n} \to^d X g'(a). $$ If $g′(a) = 0$ and $g′′(a)$ exists, then $$ \frac{g(a + b_n X_n) - g(a)}{b_n^2} \to^d \frac{1}{2} X^2 g''(a). $$