# Machine Learning Team ## How to open notebook A. Use VSCode Remote Developement (Recommended) B. Use jupyter notebook browser Once you enter the server: 1. `nvidai-smi` to check whether others are using. 2. `conda activate sheng-ru` 3. `cd Documents/sheng-ru` 4. `/home/wmnlab/anaconda3/envs/sheng-ru/bin/jupyter notebook --no-browse` 5. Click the link in the terminal output and you will open jupyter notebook. ## Data Create 1. ssh Database Server 2. (If using VSCode) Open workspace file */home/wmnlab/sheng-ru/sheng-ru.code-workspace* 3. Open jupyter notebook */home/wmnlab/sheng-ru/ntu-experiments/sheng-ru/post_processing/Input_label_create.ipynb* 4. Run all the blocks under Functions 5. Move to the block Single Radio - 2nd Version: a. run the *def data_create()* block b. Change the setting and run ![螢幕擷取畫面 2023-11-30 144302](https://hackmd.io/_uploads/BJAdWhBBa.png) c. The data output at */home/wmnlab/sheng-ru/ml_data/v2* 6. You can put the data to 4090 server: /home/wmnlab/Documents/sheng-ru/HO-Prediction/data/version2 **<font color="#f00">Notice</font>** Please do not use the data of **TCP** data and **modem action** data. ## About the data 1. **PCI**: PCI of LTE eNB 2. **EARFCN**: EARFCN of LTE eNB, kind of like its using frequency. 3. **NR-PCI**: PCI of NR gNB 4. **num_of_neis**: Number of same EARFCN neighbor cells detected. 5. **RSRP**, **RSRQ**: RSRP, RSRQ of the serving LTE eNB. 6. **RSRP1**, **RSRQ1**, **RSRP2**, **RSRQ2**: RSRP/RSRQ of the strongest and second strongest same EARFCN neighbor cells. 7. **nr-RSRP**, **nr-RSRQ**, **nr-RSRP1**, **nr-RSRQ1**, **nr-RSRP2**, **nr-RSRQ2**: similar to that of afore **RSRP**, **RSRQ**... Except they are for NR gNB. 8. **eventA1**, **eventA2**, **E-UTRAN-eventA3**, **eventA5**, **eventA6**, **NR-eventA3**, **eventB1-NR-r15**: Happened Handover Event Measurement Report; The value will be either 0 or a float range from 0-1. If the value is a. 0 means no event happen in this time slot. b. float means event happen in this time slot and its relative happen time. 9. **reportCGI**, **reportStrongestCells**: Happend Preiodic Measurereport. 10. **Conn_Rel**, **Conn_Req**, **LTE_HO**, **MN_HO**, **MN_HO_to_eNB**, **SN_setup**, **SN_Rel**, **SN_HO**, **RLF_II**, **RLF_III**, **SCG_RLF**, **Add_SCell**: Handover related message and Handover Type; The value will be either 0 or a float range from 0-1 as that of event. 11. **RLF_cause**: Type of RLF failure. Hard to use as feature. 12. **dl-loss**, **ul-loss**, **dl-exc-lat**, **ul-exc-lat**, **dl-latency**, **ul-latency**: The transmission performance in this time slot. <font color="#f00">Don't us them as feature now</font>. **<font color="#f00">Notice</font>** **PCI**, **EARFCN**, and **NR-PCI** may be None at the start of some data. It's Because the start recording time of mobileInsight and tcpdump are slightly different. **RSRP1**, **RSRQ1**, **RSRP2**, **RSRQ2** may be 0 sometime. That's because no neighbor cells detected. # What to do? a. Create new data and check if it is abnormal. b. Predict **RLF_II** and **RLF_III**. c. You can also try to predict **dl-loss**, **ul-loss**, which I failed before. d. Use time series model of some other non-time series classification/regression model. ![image](https://hackmd.io/_uploads/ByE0FFrST.png) e. Use explanable AI tools to know which feature is important.