<!--簡報--> # 數學 --- # 一些網站 https://www.facebook.com/notes/332790981164173/ https://trello.com/b/mwHVDFqB/108%E8%AA%B2%E7%B6%B1%E9%AB%98%E4%B8%AD%E6%95%B8%E5%AD%B8-%E6%AE%B5%E8%80%83%E8%A9%A6%E9%A1%8C%E6%90%9C%E9%9B%86 --- # 數列與級數 --- ## 等差數列 ---- ### 重要性質 連續兩個值的差相等, $a_n - a_{n - 1} = d$ $2a_n = a_{n + k} + a_{n - k}$ ---- ### 等差級數和 |有給末項的話|$\displaystyle \frac{n(a_0 + a_n)}{2}$| | :--------: | :--------: | |**有給公差的話** | $\displaystyle \frac{n[2a_0 + (n - 1)d]}{2}$ --- ## 等比數列 ---- ### 重要性質 連續兩個值得比相等,$a_{n - 1} : a_{n} = 1 : r$ $a_n^2 = a_{n - k} \times a_{n + k}$ ---- ### 等比級數和 |公比大於1|$\displaystyle \frac{a_0(r^n - 1)}{r - 1}$| |:-:|:-:| |**公比小於1**|$\displaystyle \frac{a_0(1 - r^n)}{1 - r}$| 其實沒什麼差... --- ### 各種級數和 ---- $\displaystyle 1 + 2 + \cdots +n =\frac{n(n+1)}{2}$ ---- $\displaystyle 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(n + 2)}{6}$ ---- $\displaystyle 1^3 + 2^3 + \cdots + n^3 = [\frac{n(n + 1)}{2}]^2$
{"metaMigratedAt":"2023-06-16T18:26:37.167Z","metaMigratedFrom":"YAML","title":"數學","breaks":true,"contributors":"[{\"id\":\"4c53837e-3941-4548-b5f6-035c3cd0eb0f\",\"add\":1002,\"del\":26},{\"id\":\"8d5872e6-b405-4383-9776-507408389d7f\",\"add\":28,\"del\":1}]"}
    352 views