# 2021q1 Homework3 (quiz3) contributed by < `wiasliaw` > ###### tags: `sysprog2021` ## 進度 - [ ] 解釋上述程式碼運作原理,並提出改進方案 ## 測驗 先看資料結構,如下 ```cpp typedef union { char data[16]; struct { uint8_t filler[15], // 120 bits space_left : 4, is_ptr : 1, is_large_string : 1, flag2 : 1, flag3 : 1; }; struct { char *ptr; // 64 bits size_t size : MAX_STR_LEN_BITS, // 54 bits capacity : 6; }; } xs; ``` 可以知道 xs 大小為 16 bytes,heap 與 stack 的 對應的 bit 如表格所見。 | Union | data[0-7] | data[8-14] | data[15][7-4] | data[15][3-0] | | -------- | -------- | -------- | -------- | -------- | | stack | filler[0-7] | filler[8-14] | space_left | is_ptr, is_large_string, flag2, flag3 | | heap | ptr | size, capacity[5-4] | capacity[3-0] | is_ptr, is_large_string, flag2, flag3 | ### get flag or status of xs * `xs_is_ptr` & `xs_is_large_string` * 回傳 `is_ptr` 和 `is_large_string` 兩個 flag * 如果 `is_ptr` 是 true,代表 xs 存入中或長字串在 heap 裡面 * 如果 `is_large_string` 是 true,代表 xs 存入長字串在 heap 裡面 * `xs_size` * 回傳存入的字串長度 * 如果是中長字串,取出 size * 如果是短字串,計算總容量 (15 bytes) 減去剩餘量 (space_left) * `xs_is_capacity` * 回傳最大容量 * 如果是短字串,此時字串儲存在 stack,最大容量固定為 15 bytes * 如果是長字串,此時字串儲存在 heap,最大容量為 $2^{capacity}$ bytes ```cpp static inline bool xs_is_ptr(const xs *x) { return x->is_ptr; } static inline bool xs_is_large_string(const xs *x) { return x->is_large_string; } static inline size_t xs_size(const xs *x) { return xs_is_ptr(x) ? x->size : 15 - x->space_left; } static inline size_t xs_capacity(const xs *x) { return xs_is_ptr(x) ? ((size_t) 1 << x->capacity) - 1 : 15; } ``` ### xs function or macro ###### xs macro * `xs_tmp` * 在初始化前,針對字串大小作檢查 * [\_Static\_assert](https://en.cppreference.com/w/c/language/_Static_assert) * `xs_literal_empty` * 初始化 xs 並設定 `space_left` 為 15 ```c= #define xs_tmp(x) \ ((void) ((struct { \ _Static_assert(sizeof(x) <= MAX_STR_LEN, "it is too big"); \ int dummy; \ }){1}), \ xs_new(&xs_literal_empty(), x) #define xs_literal_empty() \ (xs) { .space_left = 15 } ``` ###### xs utility * `ilog2` * 用於計算分配空間的大小 * 假設字串長度為 X,如果 $X > 2^n$,則需要分配 $2^{n+1}$ 的空間 * 為了方便描述,以下以 `uint8_t` 為例 * 假設原本字串長度為 $5$ (= $00000101_{(2)}$),需要分配 $8$ ($2^{2} < 5 < 2^{3}$,$n$ 為 $2$) 個 bytes * `__builtin_clz` 可以得到從 MSB 向低位數到第一個 1 之前有幾個 0,與 8 相減,可以得到第一個 1 是從 LSB 數過來的第幾位,這個位數加一即是需要分配空間的大小。 * `xs_new` * 根據字串長度建立 xs 的物件並回傳指標 * 如果字串長度小於或等於 16,字串會複製進 stack,並更新 space_left * 如果字串長度大於 16,需要計算分配 heap 空間的大小並分配空間,最後將字串複製進 heap * `xs_newempty` * 透過 `xs_tmp` 建立只有設定 space_left 的 xs 指標 * `xs_allocate_data` * 針對中長字串分配 heap 空間 * 如果是長字串,先設定 is_large_string 為真,然後初始額外配置 4 給 reference counter,並設置 counter 數為 1 * `xs_data` * 根據 is_ptr 和 is_large_string 兩個 flag 回傳字串起始的位置 * `xs_free` * 釋放掉 xs 存入的字串 * 如果是 heap 且引用計數器為零,則釋放掉分配在 heap 的空間 * 最後利用 `xs_newempty` 回傳新的空的 xs 指標 :::danger 如果是長字串且引用計數器大於零,不應對 x 做任何事情,並回報為何不能釋放記憶體。但是回傳 `xs_newempty`,會更新原本 x 指標的位置,會造成迷途指標。 **製造一個長字串,並設定 reference counter 最後執行釋放** ```c= xs A = *xs_tmp("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"); xs_set_refcnt(&A, 10); xs_free(&A); ``` **valgrind 檢查** ```bash= valgrind --leak-check=full /path/to/main ``` **log** ```= ==12380== HEAP SUMMARY: ==12380== in use at exit: 516 bytes in 1 blocks ==12380== total heap usage: 2 allocs, 1 frees, 1,540 bytes allocated ==12380== ==12380== 516 bytes in 1 blocks are definitely lost in loss record 1 of 1 ==12380== at 0x4C31ECB: malloc (vg_replace_malloc.c:307) ==12380== by 0x108B4A: xs_allocate_data (in /home/leewei/Desktop/sysprog/quiz3-c/bin/main) ==12380== by 0x108C66: xs_new (in /home/leewei/Desktop/sysprog/quiz3-c/bin/main) ==12380== by 0x109684: main (in /home/leewei/Desktop/sysprog/quiz3-c/bin/main) ==12380== ==12380== LEAK SUMMARY: ==12380== definitely lost: 516 bytes in 1 blocks ==12380== indirectly lost: 0 bytes in 0 blocks ==12380== possibly lost: 0 bytes in 0 blocks ==12380== still reachable: 0 bytes in 0 blocks ==12380== suppressed: 0 bytes in 0 blocks ==12380== ==12380== For lists of detected and suppressed errors, rerun with: -s ==12380== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0) ``` ::: * `xs_concat` * 將字串連接, prefix 接在目標字串之前, suffix 接在字串之後 * 如果字串總長度(prefix, 目標字串, suffix 字串長度總和) 小於 capacity,不需要重新分配空間,利用 `memmove` 移動出 prefix 的空間,將 prefix 複製進去,最後將 suffix 從目標字串後複製進去。 * `xs_grow` * 改變 xs 的 capacity 到特定大小 * 計算大小方式透過 `ilog2` * 如果是短字串需要增加空間,則要先資料利用額外的 `char[16]` 存起來,原先的空間會被改來存 heap 的指標位置。 * 透過 `xs_allocate_data` 重新分配記憶體位置 * `xs_trim` * TODO * `xs_cow_lazy_copy` * TODO :::info Copy on Write 是一種對記憶體管理的最佳化手段,如果請求的資源重複則不需要複製整個資源給請求者,只需要給請求者資源的指標,一直資源有被修改,系統才會複製另外一份副本。 以爬蟲為例,需要對 URL 作處理並發送請求以得到網頁內容,假設針對同樣一個域名例如 `https://example.com` 爬蟲並使用 multi thread 做平行處理(假定每次爬蟲都獨立,執行結果不會因為執行順序先後而改變),每次初始化一個 thread 都需要複製整個網址,能以 CoW 降低複製的成本。 * TODO: 模擬 * 每次初始化 thread 都是以 `memcpy` 進行 * 每次初始化 thread 都是以 `xs` 進行 ::: ```cpp= static inline int ilog2(uint32_t n) { return 32 - __builtin_clz(n) - 1; } xs *xs_new(xs *x, const void *p) { *x = xs_literal_empty(); size_t len = strlen(p) + 1; if (len > 16) { x->capacity = ilog2(len) + 1; x->size = len - 1; x->is_ptr = true; xs_allocate_data(x, x->size, 0); memcpy(xs_data(x), p, len); } else { memcpy(x->data, p, len); x->space_left = 15 - (len - 1); } return x; } static inline xs *xs_newempty(xs *x) { *x = xs_literal_empty(); return x; } static void xs_allocate_data(xs *x, size_t len, bool reallocate) { /* Medium string */ if (len < LARGE_STRING_LEN) { x->ptr = reallocate ? realloc(x->ptr, (size_t) 1 << x->capacity) : malloc((size_t) 1 << x->capacity); return; } /* Large string */ x->is_large_string = 1; /* The extra 4 bytes are used to store the reference count */ x->ptr = reallocate ? realloc(x->ptr, (size_t)(1 << x->capacity) + 4) : malloc((size_t)(1 << x->capacity) + 4); xs_set_refcnt(x, 1); } static inline char *xs_data(const xs *x) { if (!xs_is_ptr(x)) return (char *) x->data; if (xs_is_large_string(x)) return (char *) (x->ptr + 4); return (char *) x->ptr; } static inline xs *xs_free(xs *x) { if (xs_is_ptr(x) && xs_dec_refcnt(x) <= 0) free(x->ptr); return xs_newempty(x); } xs *xs_concat(xs *string, const xs *prefix, const xs *suffix) { size_t pres = xs_size(prefix), sufs = xs_size(suffix), size = xs_size(string), capacity = xs_capacity(string); char *pre = xs_data(prefix), *suf = xs_data(suffix), *data = xs_data(string); xs_cow_lazy_copy(string, &data); if (size + pres + sufs <= capacity) { memmove(data + pres, data, size); memcpy(data, pre, pres); memcpy(data + pres + size, suf, sufs + 1); if (xs_is_ptr(string)) string->size = size + pres + sufs; else string->space_left = 15 - (size + pres + sufs); } else { xs tmps = xs_literal_empty(); xs_grow(&tmps, size + pres + sufs); char *tmpdata = xs_data(&tmps); memcpy(tmpdata + pres, data, size); memcpy(tmpdata, pre, pres); memcpy(tmpdata + pres + size, suf, sufs + 1); xs_free(string); *string = tmps; string->size = size + pres + sufs; } return string; } xs *xs_grow(xs *x, size_t len) { char buf[16]; if (len <= xs_capacity(x)) return x; /* Backup first */ if (!xs_is_ptr(x)) memcpy(buf, x->data, 16); x->is_ptr = true; x->capacity = ilog2(len) + 1; if (xs_is_ptr(x)) { xs_allocate_data(x, len, 1); } else { xs_allocate_data(x, len, 0); memcpy(xs_data(x), buf, 16); } return x; } xs *xs_trim(xs *x, const char *trimset) { if (!trimset[0]) return x; char *dataptr = xs_data(x), *orig = dataptr; if (xs_cow_lazy_copy(x, &dataptr)) orig = dataptr; /* similar to strspn/strpbrk but it operates on binary data */ uint8_t mask[32] = {0}; #define check_bit(byte) (mask[(uint8_t) byte / 8] & 1 << (uint8_t) byte % 8) #define set_bit(byte) (mask[(uint8_t) byte / 8] |= 1 << (uint8_t) byte % 8) size_t i, slen = xs_size(x), trimlen = strlen(trimset); for (i = 0; i < trimlen; i++) set_bit(trimset[i]); for (i = 0; i < slen; i++) if (!check_bit(dataptr[i])) break; for (; slen > 0; slen--) if (!check_bit(dataptr[slen - 1])) break; dataptr += i; slen -= i; /* reserved space as a buffer on the heap. * Do not reallocate immediately. Instead, reuse it as possible. * Do not shrink to in place if < 16 bytes. */ memmove(orig, dataptr, slen); /* do not dirty memory unless it is needed */ if (orig[slen]) orig[slen] = 0; if (xs_is_ptr(x)) x->size = slen; else x->space_left = 15 - slen; return x; #undef check_bit #undef set_bit } static bool xs_cow_lazy_copy(xs *x, char **data) { if (xs_get_refcnt(x) <= 1) return false; /* Lazy copy */ xs_dec_refcnt(x); xs_allocate_data(x, x->size, 0); if (data) { memcpy(xs_data(x), *data, x->size); /* Update the newly allocated pointer */ *data = xs_data(x); } return true; } ``` ### reference counter :::info reference counter 是一個計數器,用於紀錄資源被參照的次數。使用情境有 garbage collection,如果某個變數儲存的資源沒有被其他程式參照或是使用時,reference counter 應為 0,gc 就能以此回收不需要的空間。Rust 則是用於多重所有權,以追蹤資源有沒有被使用。 ::: :::warning TODO: 討論 reference counting 的考量,特別是適用場景,接著才列出原始程式碼。 :notes: jserv ::: * 當 xs 存入長字串時,會在 `x->ptr` 預留 `size_t + 4` 的空間儲存 reference count。下方四個 function 用於對 reference counter 操作 * `xs_set_refcnt`: 指派值給 reference counter * `xs_inc_refcnt`: counter 計數加一 * `xs_dec_refcnt`: counter 計數減一 * `xs_get_refcnt`: 取得 counter 的值 ```cpp static inline void xs_set_refcnt(const xs *x, int val) { *((int *) ((size_t) x->ptr)) = val; } static inline void xs_inc_refcnt(const xs *x) { if (xs_is_large_string(x)) ++(*(int *) ((size_t) x->ptr)); } static inline int xs_dec_refcnt(const xs *x) { if (!xs_is_large_string(x)) return 0; return --(*(int *) ((size_t) x->ptr)); } static inline int xs_get_refcnt(const xs *x) { if (!xs_is_large_string(x)) return 0; return *(int *) ((size_t) x->ptr); } ```