## The Laplacian matrix of the hypercube $$L(Q_n)=\begin{pmatrix} L(Q_{n-1})+I & -I \\ -I & L(Q_{n-1})+I \end{pmatrix}_{2^n\times2^n}$$ --- In the following, we fix $v_1$ has $-N$ and $v_2$ has $N$, and the way to decide remaining vertices follows the laplacian matrix of the hypercube above. 所以下圖的頂點逆時針依序是$(v_1, v_2, v_4, v_3)$,而不是$(v_1, v_2, v_3, v_4)$ ## Hypercube ### For 2-cube (N=4) ![image](https://hackmd.io/_uploads/HyLMPs0u0.png) $$\tilde{L}=\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\-1 & -1 & 2 \\ \end{pmatrix}, \quad \tilde{L}^{-1}\begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}=\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \Rightarrow \sigma=(0, 3, 1, 2)$$ \begin{split} (-4, 4, 0, 0) &\stackrel{v_2}\to (-3, 2, 0, 1)\\\\ &\stackrel{v_2}\to (-2, 0, 0, 2) \\\\ &\stackrel{v_2}\to (-1, -2, 0, 3) \\\\ &\stackrel{v_3}\to (0, -2, -2, 4) \\\\ &\stackrel{v_4}\to (0, -1, -1, 2) \\\\ &\stackrel{v_4}\to (0, 0, 0, 0) \end{split} $\text{len}(\sigma):=\sum_i \sigma_{(i)}=0+3+2+1=6=3\times 2^1$ **Guess:** For $n$-cube, $\text{len}(\sigma)= \sigma_{(2)} \times 2^{n-1}\quad$ ( 總發射次數 $=v_2$ 發射次數 $\times 2^{n-1}$ ) 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | $\sigma_{(1)}, \sigma_{(3)}$ | 0 | 1 | |:----------------------------:|:---:|:---:| | $\sigma_{(2)}, \sigma_{(4)}$ | 3 | 2 | | column sum | 3 | 3 | 2. $n$ 整除 $a(1,1)$ $n=2 \ | \ 2$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=2=4/2=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=0$ ``` def chip_firing_game(initial_state, firing_sequence): cube = list(initial_state) results = [cube.copy()] neighbors = { 1: [2, 3], 2: [1, 4], 3: [1, 4], 4: [2, 3] } for vertex in range(1, 5): for _ in range(firing_sequence[vertex-1]): cube[vertex-1] -= 2 for neighbor in neighbors[vertex]: cube[neighbor-1] += 1 results.append(cube.copy()) return results def print_cube_state(state): print(state) initial_state = [-4, 4, 0, 0] firing_sequence = [0, 3, 1, 2] results = chip_firing_game(initial_state, firing_sequence) for i, state in enumerate(results): print(f"Step {i}:", end=" ") print_cube_state(state) ``` ``` Step 0: [-4, 4, 0, 0] Step 1: [-3, 2, 0, 1] Step 2: [-2, 0, 0, 2] Step 3: [-1, -2, 0, 3] Step 4: [0, -2, -2, 4] Step 5: [0, -1, -1, 2] Step 6: [0, 0, 0, 0] ``` --- ### For 3-cube (N=24) ![image](https://hackmd.io/_uploads/S1oF78kYR.png =40%x) $$\tilde{L}=\begin{pmatrix} 3 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 3 & -1 & 0 & 0 & -1 & 0 \\ -1 & -1 & 3 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 3 & -1 & -1 & 0 \\ -1 & 0 & 0 & -1 & 3 & 0 & -1 \\ 0 & -1 & 0 & -1 & 0 & 3 & -1 \\ 0 & 0 & -1 & 0 & -1 & -1 & 3 \end{pmatrix}, \quad \tilde{L}^{-1}\begin{pmatrix} 24 \\ 0 \\ 0\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}=\begin{pmatrix} 14 \\ 5 \\ 9 \\ 5 \\ 9 \\ 6 \\ 8 \end{pmatrix} \quad $$ $$\Rightarrow \sigma=(0, 14, 5, 9, 5, 9, 6, 8)$$$$\Rightarrow v_3=v_5,\quad v_4=v_6$$ We only need to consider 6 vertices: $v_1, v_2, v_3, v_4, v_7, v_8$ ![image](https://hackmd.io/_uploads/Bk1w7LkYC.png) $\text{len}(\sigma)=0+14+5+9+5+9+6+8=56=14\times 2^2$ 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | | 0 | 5 | 6 | |:----------:|:---:| --- |:---:| | | 14 | 9 | 8 | | column sum | 14 | 14 | 14 | 2. $n$ 整除 $a(1,1)$ $n=3 \ | \ 9$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=8=24/3=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=2$ ``` def chip_firing_game(initial_state, firing_sequence): cube = list(initial_state) results = [cube.copy()] neighbors = { 1: [2, 3, 5], 2: [1, 4, 6], 3: [1, 4, 7], 4: [2, 3, 8], 5: [1, 6, 7], 6: [2, 5, 8], 7: [3, 5, 8], 8: [4, 6, 7] } for vertex in range(1, 9): for _ in range(firing_sequence[vertex-1]): cube[vertex-1] -= 3 for neighbor in neighbors[vertex]: cube[neighbor-1] += 1 results.append(cube.copy()) return results def print_cube_state(state): print(state) initial_state = [-24, 24, 0, 0, 0, 0, 0, 0] firing_sequence = [0, 14, 5, 9, 5, 9, 6, 8] results = chip_firing_game(initial_state, firing_sequence) for i, state in enumerate(results): print(f"Step {i}:", end=" ") print_cube_state(state) ``` ``` Step 0: [-24, 24, 0, 0, 0, 0, 0, 0] Step 1: [-23, 21, 0, 1, 0, 1, 0, 0] Step 2: [-22, 18, 0, 2, 0, 2, 0, 0] Step 3: [-21, 15, 0, 3, 0, 3, 0, 0] Step 4: [-20, 12, 0, 4, 0, 4, 0, 0] Step 5: [-19, 9, 0, 5, 0, 5, 0, 0] Step 6: [-18, 6, 0, 6, 0, 6, 0, 0] Step 7: [-17, 3, 0, 7, 0, 7, 0, 0] Step 8: [-16, 0, 0, 8, 0, 8, 0, 0] Step 9: [-15, -3, 0, 9, 0, 9, 0, 0] Step 10: [-14, -6, 0, 10, 0, 10, 0, 0] Step 11: [-13, -9, 0, 11, 0, 11, 0, 0] Step 12: [-12, -12, 0, 12, 0, 12, 0, 0] Step 13: [-11, -15, 0, 13, 0, 13, 0, 0] Step 14: [-10, -18, 0, 14, 0, 14, 0, 0] Step 15: [-9, -18, -3, 15, 0, 14, 1, 0] Step 16: [-8, -18, -6, 16, 0, 14, 2, 0] Step 17: [-7, -18, -9, 17, 0, 14, 3, 0] Step 18: [-6, -18, -12, 18, 0, 14, 4, 0] Step 19: [-5, -18, -15, 19, 0, 14, 5, 0] Step 20: [-5, -17, -14, 16, 0, 14, 5, 1] Step 21: [-5, -16, -13, 13, 0, 14, 5, 2] Step 22: [-5, -15, -12, 10, 0, 14, 5, 3] Step 23: [-5, -14, -11, 7, 0, 14, 5, 4] Step 24: [-5, -13, -10, 4, 0, 14, 5, 5] Step 25: [-5, -12, -9, 1, 0, 14, 5, 6] Step 26: [-5, -11, -8, -2, 0, 14, 5, 7] Step 27: [-5, -10, -7, -5, 0, 14, 5, 8] Step 28: [-5, -9, -6, -8, 0, 14, 5, 9] Step 29: [-4, -9, -6, -8, -3, 15, 6, 9] Step 30: [-3, -9, -6, -8, -6, 16, 7, 9] Step 31: [-2, -9, -6, -8, -9, 17, 8, 9] Step 32: [-1, -9, -6, -8, -12, 18, 9, 9] Step 33: [0, -9, -6, -8, -15, 19, 10, 9] Step 34: [0, -8, -6, -8, -14, 16, 10, 10] Step 35: [0, -7, -6, -8, -13, 13, 10, 11] Step 36: [0, -6, -6, -8, -12, 10, 10, 12] Step 37: [0, -5, -6, -8, -11, 7, 10, 13] Step 38: [0, -4, -6, -8, -10, 4, 10, 14] Step 39: [0, -3, -6, -8, -9, 1, 10, 15] Step 40: [0, -2, -6, -8, -8, -2, 10, 16] Step 41: [0, -1, -6, -8, -7, -5, 10, 17] Step 42: [0, 0, -6, -8, -6, -8, 10, 18] Step 43: [0, 0, -5, -8, -5, -8, 7, 19] Step 44: [0, 0, -4, -8, -4, -8, 4, 20] Step 45: [0, 0, -3, -8, -3, -8, 1, 21] Step 46: [0, 0, -2, -8, -2, -8, -2, 22] Step 47: [0, 0, -1, -8, -1, -8, -5, 23] Step 48: [0, 0, 0, -8, 0, -8, -8, 24] Step 49: [0, 0, 0, -7, 0, -7, -7, 21] Step 50: [0, 0, 0, -6, 0, -6, -6, 18] Step 51: [0, 0, 0, -5, 0, -5, -5, 15] Step 52: [0, 0, 0, -4, 0, -4, -4, 12] Step 53: [0, 0, 0, -3, 0, -3, -3, 9] Step 54: [0, 0, 0, -2, 0, -2, -2, 6] Step 55: [0, 0, 0, -1, 0, -1, -1, 3] Step 56: [0, 0, 0, 0, 0, 0, 0, 0] ``` --- ### For 4-cube (N=96) ![image](https://hackmd.io/_uploads/rkbGVUyFR.png =50%x) $$\tilde{L}=\begin{pmatrix} 4 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 4 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 4 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 4 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & -1 & -1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 4 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 4 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 4 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 4 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & -1 & -1 & 4 \end{pmatrix}$$ $$\tilde{L}^{-1}\begin{pmatrix} 96 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}=\begin{pmatrix} 45 \\ 17 \\ 28 \\ 17 \\ 28 \\ 20 \\ 25 \\ 17 \\ 28 \\ 20 \\ 25 \\ 20 \\ 25 \\ 21 \\ 24 \end{pmatrix} \quad \Rightarrow \sigma=(0, 45, 17, 28, 17, 28, 20, 25, 17, 28, 20, 25, 20, 25, 21, 24)$$$$\Rightarrow v_3=v_5=v_9,\quad v_4=v_6=v_{10},\quad v_7=v_{11}=v_{13},\quad v_8=v_{12}=v_{14}$$ We only need to consider 8 vertices: $v_1, v_2, v_3, v_4, v_7, v_8, v_{15}, v_{16}$ ![image](https://hackmd.io/_uploads/r1pBBI1FA.png =70%x) $\text{len}(\sigma)=360=45\times 2^3$ 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | | 0 | 17 | 20 | 21 | |:----------:|:---:| --- | --- |:---:| | | 45 | 28 | 25 | 24 | | column sum | 45 | 45 | 45 | 45 | 2. $n$ 整除 $a(1,1)$ $n=4 \ | \ 28$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=24=96/4=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=6, \ 3\ |\ 24-21$ ``` def chip_firing_game(initial_state, firing_sequence): cube = list(initial_state) results = [cube.copy()] neighbors = { 1: [2, 3, 5, 9], 2: [1, 4, 6, 10], 3: [1, 4, 7, 11], 4: [2, 3, 8, 12], 5: [1, 6, 7, 13], 6: [2, 5, 8, 14], 7: [3, 5, 8, 15], 8: [4, 6, 7, 16], 9: [1, 10, 11, 13], 10: [2, 9, 12, 14], 11: [3, 9, 12, 15], 12: [4, 10, 11, 16], 13: [5, 9, 14, 15], 14: [6, 10, 13, 16], 15: [7, 11, 13, 16], 16: [8, 12, 14, 15] } for vertex in range(1, 17): for _ in range(firing_sequence[vertex-1]): cube[vertex-1] -= 4 for neighbor in neighbors[vertex]: cube[neighbor-1] += 1 results.append(cube.copy()) return results def print_cube_state(state): print(state) initial_state = [-96, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] firing_sequence = [0, 45, 17, 28, 17, 28, 20, 25, 17, 28, 20, 25, 20, 25, 21, 24] results = chip_firing_game(initial_state, firing_sequence) for i, state in enumerate(results): print(f"Step {i}:", end=" ") print_cube_state(state) ``` ``` Step 0: [-96, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 1: [-95, 92, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] Step 2: [-94, 88, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0] Step 3: [-93, 84, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0] Step 4: [-92, 80, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0] Step 5: [-91, 76, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0] Step 6: [-90, 72, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0] Step 7: [-89, 68, 0, 7, 0, 7, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0] Step 8: [-88, 64, 0, 8, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0] Step 9: [-87, 60, 0, 9, 0, 9, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0] Step 10: [-86, 56, 0, 10, 0, 10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0] . . . Step 352: [0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, -8, 0, -8, -8, 32] Step 353: [0, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, -7, 0, -7, -7, 28] Step 354: [0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, -6, 0, -6, -6, 24] Step 355: [0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, -5, 0, -5, -5, 20] Step 356: [0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, -4, 16] Step 357: [0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, -3, 0, -3, -3, 12] Step 358: [0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, -2, -2, 8] Step 359: [0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, -1, 4] Step 360: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ``` --- ### For 5-cube (N=960) $\tilde{L}(Q_5)$: ![image](https://hackmd.io/_uploads/HknHsPkF0.png) \begin{split} \tilde{L}^{-1}\begin{pmatrix} 960 \\ 0 \\ . \\ . \\. \\0 \end{pmatrix}= (&372, 147, 225, 147, 225, 170, 202, 147, 225, 170,\\ & 202, 170, 202, 177,195, 147, 225, 170, 202, 170,\\ & 202, 177, 195, 170, 202, 177, 195, 177, 195, 180, 192)^T \end{split} \begin{split} \Rightarrow \sigma=(&0, 372, 147, 225, 147, 225, 170, 202, 147, 225, 170, 202, \\ &170, 202, 177,195, 147, 225, 170, 202, 170, 202, \\ & 177, 195, 170, 202, 177, 195, 177, 195, 180, 192) \end{split} \begin{split} \Rightarrow \ &v_3=v_5=v_9=v_{17}\\ &v_4=v_6=v_{10}=v_{18}\\ &v_7=v_{11}=v_{13}=v_{19}=v_{21}=v_{25}\\ &v_8=v_{12}=v_{14}=v_{20}=v_{22}=v_{26}\\ &v_{15}=v_{23}=v_{27}=v_{29}\\ &v_{16}=v_{24}=v_{28}=v_{30} \end{split} We only need to consider 10 vertices: $v_1, v_2, v_3, v_4, v_7, v_8, v_{15}, v_{16}, v_{31}, v_{32}$ $\text{len}(\sigma)=5952=372\times 2^4$ 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | | 0 | 147 | 170 | 177 | 180 | |:----------:|:---:| --- | --- | --- |:---:| | | 372 | 225 | 202 | 195 | 192 | | column sum | 372 | 372 | 372 | 372 | 372 | 2. $n$ 整除 $a(1,1)$ $n=5 \ | \ 225$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=192=960/5=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=12, \ 3\ |\ 12=192-180$ ``` def chip_firing_game(initial_state, firing_sequence): cube = list(initial_state) results = [cube.copy()] neighbors = { 1: [2, 3, 5, 9, 17], 2: [1, 4, 6, 10, 18], 3: [1, 4, 7, 11, 19], 4: [2, 3, 8, 12, 20], 5: [1, 6, 7, 13, 21], 6: [2, 5, 8, 14, 22], 7: [3, 5, 8, 15, 23], 8: [4, 6, 7, 16, 24], 9: [1, 10, 11, 13, 25], 10: [2, 9, 12, 14, 26], 11: [3, 9, 12, 15, 27], 12: [4, 10, 11, 16, 28], 13: [5, 9, 14, 15, 29], 14: [6, 10, 13, 16, 30], 15: [7, 11, 13, 16, 31], 16: [8, 12, 14, 15, 32], 17: [1, 18, 19, 21, 25], 18: [2, 17, 20, 22, 26], 19: [3, 17, 20, 23, 27], 20: [4, 18, 19, 24, 28], 21: [5, 17, 22, 23, 29], 22: [6, 18, 21, 24, 30], 23: [7, 19, 21, 24, 31], 24: [8, 20, 22, 23, 32], 25: [9, 17, 26, 27, 29], 26: [10, 18, 25, 28, 30], 27: [11, 19, 25, 28, 31], 28: [12, 20, 26, 27, 32], 29: [13, 21, 25, 30, 31], 30: [14, 22, 26, 29, 32], 31: [15, 23, 27, 29, 32], 32: [16, 24, 28, 30, 31] } for vertex in range(1, 33): for _ in range(firing_sequence[vertex-1]): cube[vertex-1] -= 5 for neighbor in neighbors[vertex]: cube[neighbor-1] += 1 results.append(cube.copy()) return results def print_cube_state(state): print(state) initial_state = [-960, 960, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] firing_sequence = [0, 372, 147, 225, 147, 225, 170, 202, 147, 225, 170, 202, 170, 202, 177,195, 147, 225, 170, 202, 170, 202, 177, 195, 170, 202, 177, 195, 177, 195, 180, 192] results = chip_firing_game(initial_state, firing_sequence) # Print the first 10 states for i in range(min(10, len(results))): print(f"Step {i}:", end=" ") print_cube_state(results[i]) # Print the last 10 states if len(results) > 10: for i in range(-10, 0): print(f"Step {len(results) + i}:", end=" ") print_cube_state(results[i]) ``` ``` Step 0: [-960, 960, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 1: [-959, 955, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 2: [-958, 950, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 3: [-957, 945, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 4: [-956, 940, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 5: [-955, 935, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 6: [-954, 930, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 7: [-953, 925, 0, 7, 0, 7, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 8: [-952, 920, 0, 8, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Step 9: [-951, 915, 0, 9, 0, 9, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] . . . Step 5943: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, -9, 0, 0, 0, -9, 0, -9, -9, 45] Step 5944: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, -8, 0, -8, -8, 40] Step 5945: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, -7, 0, -7, -7, 35] Step 5946: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, -6, 0, -6, -6, 30] Step 5947: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, -5, 0, -5, -5, 25] Step 5948: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, -4, 20] Step 5949: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, -3, 0, -3, -3, 15] Step 5950: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 0, -2, -2, 10] Step 5951: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, -1, 5] Step 5952: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ``` --- ### For 6-cube (N=960) \begin{split} \tilde{L}(Q_6)^{-1}\begin{pmatrix} 960 \\ 0 \\ . \\ . \\. \\0 \end{pmatrix}= (&315, 129, 186, 129, 186, 147, 168, 129, 186, \\&147, 168, 147, 168, 152, 163, 129, 186, 147, \\&168, 147, 168, 152, 163, 147, 168, 152, 163, \\&152, 163, 154, 161, 129, 186, 147, 168, 147, \\&168, 152, 163, 147, 168, 152, 163, 152, 163,\\&154, 161, 147, 168, 152, 163, 152, 163, 154, \\&161, 152, 163, 154, 161, 154, 161, 155, 160)^T \end{split} \begin{split} \Rightarrow \sigma=(&0, 315, 129, 186, 129, 186, 147, 168, 129, 186, \\&147, 168, 147, 168, 152, 163, 129, 186, 147, \\&168, 147, 168, 152, 163, 147, 168, 152, 163, \\&152, 163, 154, 161, 129, 186, 147, 168, 147, \\&168, 152, 163, 147, 168, 152, 163, 152, 163,\\&154, 161, 147, 168, 152, 163, 152, 163, 154, \\&161, 152, 163, 154, 161, 154, 161, 155, 160) \end{split} \begin{split} \Rightarrow \ &v_3=v_5=v_9=v_{17}=v_{33}\\ &v_4=v_6=v_{10}=v_{18}=v_{34}\\ &v_7=v_{11}=v_{13}=v_{19}=v_{21}=v_{25}=v_{35}=v_{37}=v_{41}=v_{49}\\ &v_8=v_{12}=v_{14}=v_{20}=v_{22}=v_{26}=v_{36}=v_{38}=v_{42}=v_{50}\\ &v_{15}=v_{23}=v_{27}=v_{29}=v_{39}=v_{43}=v_{45}=v_{51}=v_{53}=v_{57}\\ &v_{16}=v_{24}=v_{28}=v_{30}=v_{40}=v_{44}=v_{46}=v_{52}=v_{54}=v_{58}\\ &v_{31}=v_{47}=v_{55}=v_{59}=v_{61}\\ &v_{32}=v_{48}=v_{56}=v_{60}=v_{62} \end{split} We only need to consider 12 vertices: $v_1, v_2, v_3, v_4, v_7, v_8, v_{15}, v_{16}, v_{31}, v_{32}, v_{63}, v_{64}$ $\text{len}(\sigma)=10080=315\times 2^5$ 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | | 0 | 129 | 147 | 152 | 154 | 155 | |:----------:|:---:| --- | --- | --- | --- |:---:| | | 315 | 186 | 168 | 163 | 161 | 160 | | column sum | 315 | 315 | 315 | 315 | 315 | 315 | 2. $n$ 整除 $a(1,1)$ $n=6 \ | \ 186$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=160=960/6=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=20, \ 5\ |\ 5=160-155$ --- ### For 7-cube (N=13440) \begin{split} \tilde{L}(Q_7)^{-1}\begin{pmatrix} 13440 \\ 0 \\ . \\ . \\. \\0 \end{pmatrix}= (&3810, 1605, 2205, 1605, 2205, 1806, 2004, 1605, 2205, 1806, \\&2004, 1806, 2004, 1857, 1953, 1605, 2205, 1806, 2004, 1806, \\&2004, 1857, 1953, 1806, 2004, 1857, 1953, 1857, 1953, 1876, \\&1934, 1605, 2205, 1806, 2004, 1806, 2004, 1857, 1953, 1806, \\&2004, 1857, 1953, 1857, 1953, 1876, 1934, 1806, 2004, 1857, \\&1953, 1857, 1953, 1876, 1934, 1857, 1953, 1876, 1934, 1876, \\&1934, 1885, 1925, 1605, 2205, 1806, 2004, 1806, 2004, 1857, \\&1953, 1806, 2004, 1857, 1953, 1857, 1953, 1876, 1934, 1806, \\&2004, 1857, 1953, 1857, 1953, 1876, 1934, 1857, 1953, 1876, \\&1934, 1876, 1934, 1885, 1925, 1806, 2004, 1857, 1953, 1857, \\&1953, 1876, 1934, 1857, 1953, 1876, 1934, 1876, 1934, 1885, \\&1925, 1857, 1953, 1876, 1934, 1876, 1934, 1885, 1925, 1876, \\&1934, 1885, 1925, 1885, 1925, 1890, 1920)^T \end{split} \begin{split} \Rightarrow \sigma=(&0, 3810, 1605, 2205, 1605, 2205, 1806, 2004, 1605, 2205, 1806, \\&2004, 1806, 2004, 1857, 1953, 1605, 2205, 1806, 2004, 1806, \\&2004, 1857, 1953, 1806, 2004, 1857, 1953, 1857, 1953, 1876, \\&1934, 1605, 2205, 1806, 2004, 1806, 2004, 1857, 1953, 1806, \\&2004, 1857, 1953, 1857, 1953, 1876, 1934, 1806, 2004, 1857, \\&1953, 1857, 1953, 1876, 1934, 1857, 1953, 1876, 1934, 1876, \\&1934, 1885, 1925, 1605, 2205, 1806, 2004, 1806, 2004, 1857, \\&1953, 1806, 2004, 1857, 1953, 1857, 1953, 1876, 1934, 1806, \\&2004, 1857, 1953, 1857, 1953, 1876, 1934, 1857, 1953, 1876, \\&1934, 1876, 1934, 1885, 1925, 1806, 2004, 1857, 1953, 1857, \\&1953, 1876, 1934, 1857, 1953, 1876, 1934, 1876, 1934, 1885, \\&1925, 1857, 1953, 1876, 1934, 1876, 1934, 1885, 1925, 1876, \\&1934, 1885, 1925, 1885, 1925, 1890, 1920) \end{split} \begin{split} \Rightarrow \ &v_3=v_5=v_9=v_{17}=v_{33}=v_{65}\\ &v_4=v_6=v_{10}=v_{18}=v_{34}=v_{66}\\ &v_7=v_{11}=v_{13}=v_{19}=v_{21}=v_{25}=v_{35}=v_{37}=v_{41}=v_{49}=v_{67}=v_{69}=v_{73}=v_{81}=v_{97}\\ &v_8=v_{12}=v_{14}=v_{20}=v_{22}=v_{26}=v_{36}=v_{38}=v_{42}=v_{50}=v_{68}=v_{70}=v_{74}=v_{82}=v_{98}\\ &v_{15}=v_{23}=v_{27}=v_{29}=v_{39}=v_{43}=v_{45}=v_{51}=v_{53}=v_{57}=v_{71}=v_{75}=v_{77}=v_{83}=v_{85}=v_{89}=v_{99}=v_{101}=v_{105}=v_{113}\\ &v_{16}=v_{24}=v_{28}=v_{30}=v_{40}=v_{44}=v_{46}=v_{52}=v_{54}=v_{58}=v_{72}=v_{76}=v_{78}=v_{84}=v_{86}=v_{90}=v_{100}=v_{102}=v_{106}=v_{114}\\ &v_{31}=v_{47}=v_{55}=v_{59}=v_{61}=v_{79}=v_{87}=v_{91}=v_{93}=v_{103}=v_{107}=v_{109}=v_{115}=v_{117}=v_{121}\\ &v_{32}=v_{48}=v_{56}=v_{60}=v_{62}=v_{80}=v_{88}=v_{92}=v_{94}=v_{104}=v_{108}=v_{110}=v_{116}=v_{118}=v_{122}\\ &v_{63}=v_{95}=v_{111}=v_{119}=v_{123}=v_{125}\\ &v_{64}=v_{96}=v_{112}=v_{120}=v_{124}=v_{126} \end{split} We only need to consider 14 vertices: $v_1, v_2, v_3, v_4, v_7, v_8, v_{15}, v_{16}, v_{31}, v_{32}, v_{63}, v_{64}, v_{127}, v_{128}$ $\text{len}(\sigma)=243840=3810\times 2^6$ 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | | 0 | 1605 | 1806 | 1857 | 1876 | 1885 | 1890 | |:----------:|:----:|:----:| ---- | ---- | ---- | ---- |:----:| | | 3810 | 2205 | 2004 | 1953 | 1934 | 1925 | 1920 | | column sum | 3810 | 3810 | 3810 | 3810 | 3810 | 3810 | 3810 | 2. $n$ 整除 $a(1,1)$ $n=7 \ | \ 2205$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=1920=13440/7=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=30, \ 3\ |\ 30=1920-1890, \ 5\ |\ 30, \ 15\ |\ 30$ --- ### For 8-cube (N=107520) Compute $\tilde{L}(Q_8)^{-1}\begin{pmatrix} 107520 \\ 0 \\ . \\ . \\. \\0 \end{pmatrix}$, we get $\sigma=$ (由左到右,由上到下依序為 $\sigma_{(1)}, \sigma_{(2)}, \cdots, \sigma_{(256)}$) ![image](https://hackmd.io/_uploads/ryglZxMFA.png) \begin{split} \Rightarrow \ &v_{3}=v_{5}=v_{9}=v_{17}=v_{33}=v_{65}=v_{129}\\ &v_{4}=v_{6}=v_{10}=v_{18}=v_{34}=v_{66}=v_{130}\\ &v_{7}=v_{11}=v_{13}=v_{19}=v_{21}=v_{25}=v_{35}=v_{37}=v_{41}=v_{49}=v_{67}=v_{69}=v_{73}=v_{81}=v_{97}=v_{131}=v_{133}=v_{137}=v_{145}=v_{161}=v_{193}\\ &v_{8}=v_{12}=v_{14}=v_{20}=v_{22}=v_{26}=v_{36}=v_{38}=v_{42}=v_{50}=v_{68}=v_{70}=v_{74}=v_{82}=v_{98}=v_{132}=v_{134}=v_{138}=v_{146}=v_{162}=v_{194}\\ &v_{15}=v_{23}=v_{27}=v_{29}=v_{39}=v_{43}=v_{45}=v_{51}=v_{53}=v_{57}=v_{71}=v_{75}=v_{77}=v_{83}=v_{85}=v_{89}=v_{99}=v_{101}=v_{105}=v_{113}=v_{135}=v_{139}=v_{141}=v_{147}=v_{149}=v_{153}=v_{163}=v_{165}=v_{169}=v_{177}=v_{195}=v_{197}=v_{201}=v_{209}=v_{225}\\ &v_{16}=v_{24}=v_{28}=v_{30}=v_{40}=v_{44}=v_{46}=v_{52}=v_{54}=v_{58}=v_{72}=v_{76}=v_{78}=v_{84}=v_{86}=v_{90}=v_{100}=v_{102}=v_{106}=v_{114}=v_{136}=v_{140}=v_{142}=v_{148}=v_{150}=v_{154}=v_{164}=v_{166}=v_{170}=v_{178}=v_{196}=v_{198}=v_{202}=v_{210}=v_{226}\\ &v_{31}=v_{47}=v_{55}=v_{59}=v_{61}=v_{79}=v_{87}=v_{91}=v_{93}=v_{103}=v_{107}=v_{109}=v_{115}=v_{117}=v_{121}=v_{143}=v_{151}=v_{155}=v_{157}=v_{167}=v_{171}=v_{173}=v_{179}=v_{181}=v_{185}=v_{199}=v_{203}=v_{205}=v_{211}=v_{213}=v_{217}=v_{227}=v_{229}=v_{233}=v_{241}\\ &v_{32}=v_{48}=v_{56}=v_{60}=v_{62}=v_{80}=v_{88}=v_{92}=v_{94}=v_{104}=v_{108}=v_{110}=v_{116}=v_{118}=v_{122}=v_{144}=v_{152}=v_{156}=v_{158}=v_{168}=v_{172}=v_{174}=v_{180}=v_{182}=v_{186}=v_{200}=v_{204}=v_{206}=v_{212}=v_{214}=v_{218}=v_{228}=v_{230}=v_{234}=v_{242}\\ &v_{63}=v_{95}=v_{111}=v_{119}=v_{123}=v_{125}=v_{159}=v_{175}=v_{183}=v_{187}=v_{189}=v_{207}=v_{215}=v_{219}=v_{221}=v_{231}=v_{235}=v_{237}=v_{243}=v_{245}=v_{249}\\ &v_{64}=v_{96}=v_{112}=v_{120}=v_{124}=v_{126}=v_{160}=v_{176}=v_{184}=v_{188}=v_{190}=v_{208}=v_{216}=v_{220}=v_{222}=v_{232}=v_{236}=v_{238}=v_{244}=v_{246}=v_{250}\\ &v_{127}=v_{191}=v_{223}=v_{239}=v_{247}=v_{251}=v_{253}\\ &v_{128}=v_{192}=v_{224}=v_{240}=v_{248}=v_{252}=v_{254} \end{split} We only need to consider 16 vertices: $v_1, v_2, v_3, v_4, v_7, v_8, v_{15}, v_{16}, v_{31}, v_{32}, v_{63}, v_{64}, v_{127}, v_{128}, v_{255}, v_{256}$ $\text{len}(\sigma)=3427200=26775\times 2^7$ 1. 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 | | 0 | 11535 | 12840 | 13143 | 13248 | 13295 | 13320 | 13335 | |:----------:|:-----:|:-----:| ----- | ----- |:-----:| ----- |:-----:|:-----:| | | 26775 | 15240 | 13935 | 13632 | 13527 | 13480 | 13455 | 13440 | | column sum | 26775 | 26775 | 26775 | 26775 | 26775 | 26775 | 26775 | 26775 | 2. $n$ 整除 $a(1,1)$ $n=8 \ | \ 15240$ 3. $a(1,n-1)=\text{max order}/n$ $a(1,n-1)=13440=107520/8=\text{max order}/n$ 4. $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ $(n-1)(n-2)=42, \ 3\ |\ 105, \ 7\ |\ 105, \ 21\ |\ 105$ --- ## Prime Factorization ### 2-cube $[0, 3, 1, 2]$ $3=3$ $1=1$ $2=2$ ### 3-cube $[0, 14, 5, 9, 6, 8]$ $14=2\times 7$ $5=5$ $9=3^2$ $6=2 \times 3$ $8=2^3$ ### 4-cube $[0, 45, 17, 28, 20, 25, 21, 24]$ $45=3^2 \times 5$ $17=17$ $28=2^2 \times 7$ $20=2^2 \times 5$ $25=5^2$ $21=3 \times 7$ $24=2^3 \times 3$ ### 5-cube $[0, 372, 147, 225, 170, 202, 177, 195, 180, 192]$ $372=2^2 \times 3 \times 31$ $147=3 \times 7^2$ $225=3^2 \times 5^2$ $170=2 \times 5 \times 17$ $202=2 \times 101$ $177=3 \times 59$ $195=3 \times 5 \times 13$ $180=2^2 \times 3^2 \times 5$ $192=2^6 \times 3$ ### 6-cube $[0, 315, 129, 186, 147, 168, 152, 163, 154, 161, 155, 160]$ $315=3^2 \times 5 \times 7$ $129=3 \times 43$ $186=2 \times 3 \times 31$ $147=3 \times 7^2$ $168=2^3 \times 3 \times 7$ $152=2^3 \times 19$ $163=163$ $154=2 \times 7 \times 11$ $161=7 \times 23$ $155=5 \times 31$ $160=2^5 \times 5$ ### 7-cube $[0, 3810, 1605, 2205, 1806, 2004, 1857, 1953, 1876, 1934, 1885, 1925, 1890, 1920]$ $3810=2 \times 3 \times 5 \times 127$ $1605=3 \times 5 \times 107$ $2205=3^2 \times 5 \times 7^2$ $1806=2 \times 3 \times 7 \times 43$ $2004=2^2 \times 3 \times 167$ $1857=3 \times 619$ $1953=3^2 \times 7 \times 31$ $1876=2^2 \times 7 \times 67$ $1934=2 \times 967$ $1885=5 \times 13 \times 29$ $1925=5^2 \times 7 \times 11$ $1890=2 \times 3^3 \times 5 \times 7$ $1920=2^7 \times 3 \times 5$ ### 8-cube $[0, 26775, 11535, 15240, 12840, 13935, 13143, 13632, 13248, 13527, 13295, 13480, 13320, 13455, 13335, 13440]$ $26775=3^2 \times 5^2 \times 7 \times 17$ $11535=3 \times 5 \times 769$ $15240=2^3 \times 3 \times 5 \times 127$ $12840=2^3 \times 3 \times 5 \times 107$ $13935=3 \times 5 \times 929$ $13143=3 \times 13 \times 337$ $13632=2^6 \times 3 \times 71$ $13248=2^6 \times 3^2 \times 23$ $13527=3^4 \times 167$ $13295=5 \times 2659$ $13480=2^3 \times 5 \times 337$ $13320=2^3 \times 3^2 \times 5 \times 37$ $13455=3^2 \times 5 \times 13 \times 23$ $13335=3 \times 5 \times 7 \times 127$ $13440=2^7 \times 3 \times 5 \times 7$ --- ## Observation * For $n$-cube, we may only consider its $2n$ vertices, which are: $$v_1, v_2, v_3, v_4, v_7, v_8, v_{15}, v_{16},\cdots, v_{2^n-1}, v_{2^n}$$ * $\text{len}(\sigma)= \sigma_{(2)} \times 2^{n-1}\quad$ ( 總發射次數 $=v_2$ 發射次數 $\times 2^{n-1}$ ) If we find a way to get $\text{len}(\sigma)$, then we could immediately know how many times should $v_2$ fires, which has $N$ sands initially. In other words, if we find a way to get $\sigma_{(2)}$, then we could immediately know $\text{len}(\sigma)$, that is, how many times should we fire to get zero configuration. > 2-cube:$\text{len}(\sigma)= 3 \times 2^{1}\quad$ > 3-cube:$\text{len}(\sigma)= 14 \times 2^{2}\quad$ > 4-cube:$\text{len}(\sigma)= 45 \times 2^{3}\quad$ > 5-cube:$\text{len}(\sigma)= 372 \times 2^{4}\quad$ > 6-cube:$\text{len}(\sigma)= 315 \times 2^{5}\quad$ > 7-cube:$\text{len}(\sigma)= 3810 \times 2^{6}\quad$ > 8-cube:$\text{len}(\sigma)= 26775 \times 2^{7}\quad$ * 把 $2n$ 個數排成 $2\times n$ 表格的話每列的和$(a(0,i)+a(1,i))$是常數 2-cube: | $\sigma_{(1)}, \sigma_{(3)}$ | 0 | 1 | |:----------------------------:|:---:|:---:| | $\sigma_{(2)}, \sigma_{(4)}$ | 3 | 2 | | column sum | 3 | 3 | 3-cube: | | 0 | 5 | 6 | |:----------:|:---:| --- |:---:| | | 14 | 9 | 8 | | column sum | 14 | 14 | 14 | 4-cube: | | 0 | 17 | 20 | 21 | |:----------:|:---:| --- | --- |:---:| | | 45 | 28 | 25 | 24 | | column sum | 45 | 45 | 45 | 45 | 5-cube: | | 0 | 147 | 170 | 177 | 180 | |:----------:|:---:| --- | --- | --- |:---:| | | 372 | 225 | 202 | 195 | 192 | | column sum | 372 | 372 | 372 | 372 | 372 | 6-cube: | | 0 | 129 | 147 | 152 | 154 | 155 | |:----------:|:---:| --- | --- | --- | --- |:---:| | | 315 | 186 | 168 | 163 | 161 | 160 | | column sum | 315 | 315 | 315 | 315 | 315 | 315 | 7-cube: | | 0 | 1605 | 1806 | 1857 | 1876 | 1885 | 1890 | |:----------:|:----:|:----:| ---- | ---- | ---- | ---- |:----:| | | 3810 | 2205 | 2004 | 1953 | 1934 | 1925 | 1920 | | column sum | 3810 | 3810 | 3810 | 3810 | 3810 | 3810 | 3810 | 8-cube: | | 0 | 11535 | 12840 | 13143 | 13248 | 13295 | 13320 | 13335 | |:----------:|:-----:|:-----:| ----- | ----- |:-----:| ----- |:-----:|:-----:| | | 26775 | 15240 | 13935 | 13632 | 13527 | 13480 | 13455 | 13440 | | column sum | 26775 | 26775 | 26775 | 26775 | 26775 | 26775 | 26775 | 26775 | * $n$ 整除 $a(1,1)$ 2-cube:$n=2 \ | \ 2$,quotient $=1$ 3-cube:$n=3 \ | \ 9$,quotient $=3$ 4-cube:$n=4 \ | \ 28$,quotient $=7$ 5-cube:$n=5 \ | \ 225$,quotient $=45$ 6-cube:$n=6 \ | \ 186$,quotient $=31$ 7-cube:$n=7 \ | \ 2205$,quotient $=315$ 8-cube:$n=8 \ | \ 15240$,quotient $=1905$ ==The quotient divides $a(0, n-1)$ (upper right corner of the table) and $$\text{upper right corner } \div \text{ quotient }= n-1$$ In other words, $$a(0, n-1) \div (a(1, 1) \div n) = n-1$$$$\Rightarrow a(0, n-1)=\dfrac{n-1}{n}a(1, 1)$$== * $(n-1)(n-2)$ 的odd factor整除 $a(1,n-1)-a(0,n-1)$ 2-cube:$(n-1)(n-2)=0$ 3-cube:$(n-1)(n-2)=2, \ 2\ |\ 8-6$ 4-cube:$(n-1)(n-2)=6, \ 3\ |\ 24-21$ 5-cube:$(n-1)(n-2)=12, \ 3\ |\ 12=192-180$ 6-cube:$(n-1)(n-2)=20, \ 5\ |\ 5=160-155$ 7-cube:$(n-1)(n-2)=30, \ 3\ |\ 30=1920-1890, \ 5\ |\ 30, \ 15\ |\ 30$ 8-cube:$(n-1)(n-2)=42, \ 3\ |\ 105, \ 7\ |\ 105, \ 21\ |\ 105$ * $a(0,n-1; n) = \dfrac{(n-1)a(1,0; n-1)}{c(n)}$, 其中 $c(n)$ 是一個「很小」的整數。 $n=3$ : $c(3)=1$ $n=4$ : $c(4)=2$ $n=5$ : $c(5)=1$ $n=6$ : $c(6)=12$ $n=7$ : $c(7)=1$ $n=8$ : $c(8)=2$ $n=9$ : $c(9)=3$ $n=10$ : $c(10)=20$ $n=11$ : $c(11)=2$ $n=12$ : $c(12)=6$ $n=13$ : $c(13)=1$ * $a(1,n-1)=\text{max order}/n$ 2-cube:$2=4/2$ 3-cube:$8=24/3$ 4-cube:$24=96/4$ 5-cube:$192=960/5$ 6-cube:$160=960/6$ 7-cube:$1920=13440/7$ 8-cube:$13440=107520/8$ ![L-17 (1)](https://hackmd.io/_uploads/rJxu9UGL5R.jpg) ![L-18 (1)](https://hackmd.io/_uploads/Hy6qAf89C.jpg) e.g. for $n=5$, we want to prove the following two matrices have the same determinant. $$\begin{pmatrix} 5 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 20 & -4 & -12 & 0 & 0 & 0 & 0 & 0 \\ -4 & -4 & 20 & 0 & -12 & 0 & 0 & 0 & 0 \\ 0 & -12 & 0 & 30 & -6 & -12 & 0 & 0 & 0 \\ 0 & 0 & -12 & -6 & 30 & 0 & -12 & 0 & 0 \\ 0 & 0 & 0 & -12 & 0 & 20 & -4 & -4 & 0 \\ 0 & 0 & 0 & 0 & -12 & -4 & 20 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & -4 & 0 & 5 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -4 & -1 & 5 \end{pmatrix}\quad \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 20 & -4 & -12 & 0 & 0 & 0 & 0 & 0 \\ -4 & -4 & 20 & 0 & -12 & 0 & 0 & 0 & 0 \\ 0 & -12 & 0 & 30 & -6 & -12 & 0 & 0 & 0 \\ 0 & 0 & -12 & -6 & 30 & 0 & -12 & 0 & 0 \\ 0 & 0 & 0 & -12 & 0 & 20 & -4 & -4 & 0 \\ 0 & 0 & 0 & 0 & -12 & -4 & 20 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -4 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -4 & -1 & 0 \end{pmatrix}$$ * adding a scalar multiple of a row/column to another row/column. * eigenvalue * characteristic polynomial * row echelon form * cofactor expansion * find $C \in \text{SL}(2n-1, \mathbb{R})$ with $A=BC$ ---