# Theorem 23.18 Theorem 23.18: Suppose $E$ is a field extension of $F$, then the following are equivalent: \\ a) $E$ is a finite, normal, separable field extension of $F$. b) $E$ is a splitting field over $F$ of a separable polynomial. c) $E_G = F$ for some finite group $G$ of automorphisms over $E$. \\ \\ Proof: \\ For a $\Rightarrow$ b. \\ $E$ is separable $\Rightarrow$ if $e \in E, \, \exists \, p_e(x) \in F[x]$ such that $p_e$ is separable and $p_e(e) = 0$. $E$ is normal $\Rightarrow$ if $p(\alpha_1)=0$ with $p$ monic and $\alpha \in E$ then $p(x) = \prod_{i=1}^n (x-\alpha_i)$, for some set of $\{\alpha_i\}_{i=1,..,n} \subset E$. Since $E$ is a finite extension and separable, then $\exists \alpha \in E$ such that $F(\alpha)=F(\alpha_1,...,\alpha_n) = E$ by Theorem 23.12. So then there is an irreducible $p \in F[x]$ such that $p(\alpha)= p(\alpha_i) = 0$ and p splits. $p$ splits and defines this splitting extension, so $E$ is the splitting field over $F$ wrt $p$. \\ \\ b $\Rightarrow$ c \\ $E$ is a splitting field over $F$, so $G(E/F)$ is finite and $E_{G(E/F)} = F$, by Proposition 23.16. Thus such a finite $G$ exists and c is implied. \\ \\ c $\Rightarrow$ a \\ $|G| < \infty$, by Lemma 23.17 $[E:F] \leq |G| < \infty$ so $E$ is a finite extension of $F$. Recall: \\ \[G(E/F) = \{ \sigma \in \text{Aut}(E) \mid \sigma(\alpha) = \alpha \, \, \, \forall \alpha \in F \}\] and \[ E_G = \{ \alpha \in E \mid \sigma(\alpha) = \alpha \, \, \, \forall \sigma \in G \} \] \\ So if $E_G = F$ and $\sigma \in G$, then $\forall \alpha \in F$, $\sigma(\alpha) = \alpha$ $\Rightarrow \sigma \in G(E/F)$. So then $G \subseteq G(E/F)$. \\ \\ Take $\alpha_1 \in E-F$ with minimal polynomial $p(x) \in F[x]$ (we know this exists by theorem 21.15). Every other root of $p(x)$ is conjugate to $\alpha_1$ and none are in $F$ (by it being minimal), to show that $E$ is normal, I must show that all conjugates to $\alpha_1$ are in $E$. \\ \\ OUTLINE TIME: I wish to show that the minimal polynomial of $\alpha_1$ has $n$ distinct roots which I can obtain from using the automorphisms in $G$. We know the elements of $G$ permute roots, if I can find all of them using these permutations then I have shown that if $\alpha_1 \in E$ then all roots of $p$ are in $E$, showing normality. Showing that these are necessarily distinct shows then that $E$ is also separable, completing the proof. \\ \\ \section{Properties of $GF(3^3)$} \subsection{Elements and Additive Inverses} The monic polynomial I will use is: $p(x) = x^3 + 2x+1$. The elements of $GF(3^3)$ are degree 2 polynomials in $\mathbb{Z}_3[x]$. So the elements and their additive inverses are as follows (shortening the list by noting that we know $-(-x) = x$: \begin{equation*} \begin{split} -(0) & = 0 \\ -(1) & = 2 \\ -(\alpha) & = 2\alpha \\ -(\alpha+1) & = 2\alpha+2 \\ -(2\alpha+1) & = \alpha+2 \\ -(\alpha^2) & = 2\alpha^2 \\ -(\alpha^2+1) & = 2\alpha^2 + 2 \\ -(\alpha^2 + 2) & = 2\alpha^2 + 1 \\ -(\alpha^2 + \alpha) & = 2\alpha^2 + 2\alpha \\ -(2\alpha^2 + \alpha) & = \alpha^2 + 2\alpha \\ -(\alpha^2 + \alpha + 1) & = 2\alpha^2 + 2\alpha + 2 \\ -(\alpha^2 + \alpha + 2) & = 2\alpha^2 + 2\alpha + 1 \\ -(\alpha^2 +2\alpha + 1) & = 2\alpha^2 + \alpha + 2 \\ -(2\alpha^2 + \alpha + 1) & = \alpha^2 + 2\alpha + 2 \\ \end{split} \end{equation*} \subsection{Powers of $\alpha$} For all multiplication I used the following code to multiply: \begin{lstlisting}[language=Python] import numpy as np def multpolys(a,b): c = np.zeros(5) for i in range(3): for j in range(3): c[i+j] += a[i]*b[j] return np.mod(c,3) def modp(a,p): for i in range(2): a -= np.mod(a[4-i]*np.roll(p,1-i),3) a = np.mod(a,3) return a[0:3] def gf27mult(a,b,p): return modp(multpolys(a,b),p) \end{lstlisting} and then the following to find powers of $\alpha$ \begin{lstlisting}[language=Python] a = np.array([0,1,0]) b = a count = 1 while not (b[0] == 0 and b[1] == 1 and b[2] == 0) or count == 1 : print("\\alpha^{" + str(count) + "} & = " + stringpoly(b) + "\\\\") b = gf27mult(b,a,p) count += 1 \end{lstlisting} \begin{equation*} \begin{split} \alpha^{1} & = \alpha \\ \alpha^{2} & = \alpha^2 \\ \alpha^{3} & = \alpha + 2\\ \alpha^{4} & = \alpha^2 + 2\alpha \\ \alpha^{5} & = 2\alpha^2+ \alpha + 2\\ \alpha^{6} & = \alpha^2 + \alpha + 1\\ \alpha^{7} & = \alpha^2 + 2\alpha + 2\\ \alpha^{8} & = 2\alpha^2+ 2\\ \alpha^{9} & = \alpha + 1\\ \alpha^{10} & = \alpha^2 + \alpha \\ \alpha^{11} & = \alpha^2 + \alpha + 2\\ \alpha^{12} & = \alpha^2 + 2\\ \alpha^{13} & = 2\\ \alpha^{14} & = 2\alpha \\ \alpha^{15} & = 2\alpha^2\\ \alpha^{16} & = 2\alpha + 1\\ \alpha^{17} & = 2\alpha^2+ \alpha \\ \alpha^{18} & = \alpha^2 + 2\alpha + 1\\ \end{split} \end{equation*} \begin{equation*} \begin{split} \alpha^{19} & = 2\alpha^2+ 2\alpha + 2\\ \alpha^{20} & = 2\alpha^2+ \alpha + 1\\ \alpha^{21} & = \alpha^2 + 1\\ \alpha^{22} & = 2\alpha + 2\\ \alpha^{23} & = 2\alpha^2+ 2\alpha \\ \alpha^{24} & = 2\alpha^2+ 2\alpha + 1\\ \alpha^{25} & = 2\alpha^2+ 1\\ \alpha^{26} & = 1\\ \end{split} \end{equation*} \subsection{Multiplicative Inverses} I found these with the following code (however, an easier version would be to just find the $m$ such that $\beta = \alpha^m,$ and $26-m = n$, then $\beta^{-1} = \alpha^n$. I made this code before doing the powers though, so this is the code.) \begin{lstlisting}[language = Python] p = np.array([1,2,0,1,0]) mult = np.zeros((27,27,3)) for i1 in range(3): for j1 in range(3): for k1 in range(3): a = np.array([i1,j1,k1]) for i2 in range(3): for j2 in range(3): for k2 in range(3): mult[i1+3*j1+9*k1][i2+3*j2+9*k2] = modp(multpolys(a,np.array([i2,j2,k2])),p) mult2 = np.zeros((27,27)) w = np.array([1,3,9]) for i in range(27): for k in range(27): mult2[i][k] = sum(mult[i][k][:]*w) inv = np.argwhere(mult2 == 1) def invertnum(n): x = np.zeros(3) x[0] = n\%3 x[1] = ((n-x[0])/3) \% 3 x[2] = ((n-3*x[1]-x[0])/9) return x for i in range(26): print("("+stringpoly(invertnum(inv[i][0]))+")^-1 = " + stringpoly(invertnum(inv[i][1]))) \end{lstlisting} \begin{equation*} \begin{split} (1)^{-1} & = 1 \\ (2)^{-1} & = 2 \\ (\alpha )^{-1} & = 2\alpha^2 + 1 \\ (\alpha + 1)^{-1} & = 2\alpha^2 + \alpha \\ (\alpha + 2)^{-1} & = 2\alpha^2 + 2\alpha \\ (2\alpha )^{-1} & = \alpha^2 + 2 \\ (2\alpha + 1)^{-1} & = \alpha^2 + \alpha \\ (2\alpha + 2)^{-1} & = \alpha^2 + 2\alpha \\ (\alpha^2 )^{-1} & = 2\alpha^2 + 2\alpha + 1\\ (\alpha^2 + 1)^{-1} & = 2\alpha^2 + \alpha + 2\\ (\alpha^2 + 2)^{-1} & = 2\alpha \\ (\alpha^2 + \alpha )^{-1} & = 2\alpha + 1\\ (\alpha^2 + \alpha + 1)^{-1} & = 2\alpha^2 + \alpha + 1\\ (\alpha^2 + \alpha + 2)^{-1} & = 2\alpha^2 \\ (\alpha^2 + 2\alpha )^{-1} & = 2\alpha + 2\\ (\alpha^2 + 2\alpha + 1)^{-1} & = 2\alpha^2 + 2\\ (\alpha^2 + 2\alpha + 2)^{-1} & = 2\alpha^2 + 2\alpha + 2\\ (2\alpha^2 )^{-1} & = \alpha^2 + \alpha + 2\\ (2\alpha^2 + 1)^{-1} & = \alpha \\ (2\alpha^2 + 2)^{-1} & = \alpha^2 + 2\alpha + 1\\ (2\alpha^2 + \alpha )^{-1} & = \alpha + 1\\ (2\alpha^2 + \alpha + 1)^{-1} & = \alpha^2 + \alpha + 1\\ (2\alpha^2 + \alpha + 2)^{-1} & = \alpha^2 + 1\\ (2\alpha^2 + 2\alpha )^{-1} & = \alpha + 2\\ (2\alpha^2 + 2\alpha + 1)^{-1} & = \alpha^2 \\ (2\alpha^2 + 2\alpha + 2)^{-1} & = \alpha^2 + 2\alpha + 2\\ \end{split} \end{equation*} \subsection{Characteristic} The characteristic of the field is 3. Since $ 1 + 1 + 1= 3(1) = 0 $. \subsection{Finding all subrings} All subrings are closed under multiplication and subtraction. So, recalling that $\beta = \alpha^n$ for some $n$ for all $\beta \in GF(3^3)-\{0\}$ then if $R \subseteq GF(3^3)$ then $\beta^m = \alpha^{nm} \in R, \forall m \in \mathbb{Z}$. Notice then that if $\beta = \alpha^n \in R$ then for it to be closed and not $\{0\}$ or $GF(3^3)$ it is necessary for $gcd(n,26) > 1$ (else $\beta$ will generate $\alpha$ which will generate all elements of $GF(3^3)-\{0\}$ via multiplication. We then must then check that it is closed also under subtraction. 23 = 2*13, so it is sufficient to check only $\alpha^2, \alpha^{13}$. $-\alpha^2 = 2\alpha^2 = (\alpha)^{15}$. Then, since $gcd(15,26) = 1$, $\alpha^{15}$ will generate all elements of $GF(3^3)-\{0\}$. Checking $\alpha^{13} = 2$, $-\alpha^{13} = 1 = \alpha^{26}$. This with $0$ gives $\mathbb{Z}_{3}$ which is also a subfield of $GF(3^3)$. So the subrings are $\{\{0\}, \mathbb{Z}_{3}, GF(3^3)\}$, which all happen to be fields. \subsection{All other Irreducibles} Since we only have to find a cubic irreducible polynomial, then we only have to find all cubics in $\mathbb{Z}_3[x]$ with no roots in $\mathbb{Z}_3$. These are: \begin{equation*} \begin{split} &x^3 +2x + 1\\ &x^3 +2x + 2\\ &x^3 +x^2 + 2\\ &x^3 +x^2 + x + 2\\ &x^3 +x^2 + 2x + 1\\ &x^3 +2x^2 + 1\\ &x^3 +2x^2 + x + 1\\ &x^3 +2x^2 + 2x + 2\\ \end{split} \end{equation*}