# Maximum likelihood for GLM ###### tags: `Categorical data analysis` ## Fisher Information :::success <font size = 5.5> Let $L(\theta) = lnf(x;\theta)$ be a log likelihood function, then $I(\theta) = E((\frac{\partial L(\theta)}{\partial \theta})^2) = Var(\frac{\partial lnf(x;\theta)}{\partial \theta})$ is called the fisher imformation </font> ::: It can be shown that $E(\frac{\partial L(\theta)}{\partial \theta}) = 0$ ![](https://i.imgur.com/NUOxNpZ.jpg) ## Likelihood for GLM 通常GLM假設observer來自exponential (dispersion) family, 即分配可以被表成以下形式 :::success <font size = 5.5> $f(x, \theta, \phi) = e^{\frac{x\theta - b(\theta)}{a(\phi)} + c(x, \phi)}$ </font> ::: 可得出對於一個來自exponential family的random variable $X$ 的平均跟變異數 :::success <font size = 5.5> Let $L(\theta) = lnf(x, \theta, \phi)$ Then $E(\frac{\partial L(\theta)}{\partial \theta}) = 0$ $E(\frac{\partial L(\theta)}{\partial \theta}) = E(\frac{X - b^{'}(\theta)}{a(\phi)}) = 0$ $\therefore E(X) = b^{'}(\theta)$ $Var(\frac{\partial L(\theta)}{\partial \theta}) = Var(\frac{X - b^{'}(\theta)}{a(\phi)}) = b^{''}(\theta)$ $\therefore Var(X) = (a(\phi))^2b^{''}(\theta)$ </font> ::: --- 對於n個observer的GLM的likelihood function可被表成 ![](https://i.imgur.com/7oxFAKb.jpg) 其中定義linear predictor為 ![](https://i.imgur.com/qqW21CN.jpg) 要 maximize $L(\beta)$ 在每個 $\beta_j$ 下,即對其偏微 ![](https://i.imgur.com/SZG3y11.jpg) ![](https://i.imgur.com/kjoNidN.jpg) 由前面的運算得知 :::success <font size = 5.5> $\frac{\partial L}{\partial \theta} = \frac{x - b^{'}(\theta)}{a(\phi)}$ --- $\mu = b^{'}(\theta)$ $\therefore \frac{\partial \theta}{\partial \mu} = b^{''}(\theta) = (a(\phi))^2Var(X)$ --- $\frac{\partial \eta}{\partial \beta} = x$ </font> ::: 因此上式可寫為 ![](https://i.imgur.com/to8aw06.jpg)