# Quantum Computing 2022-Autumn HW7 ###### tags: `quantum` ``` ┌────────────────────────────┐┌───┐ ┌─┐ q_0: ┤ Initialize(0.57735,0.8165) ├┤ H ├──■──┤M├─── └────────────────────────────┘└───┘┌─┴─┐└╥┘┌─┐ q_1: |u> ───────────────────────────────┤ X ├─╫─┤M├ └───┘ ║ └╥┘ c_0: ═════════════════════════════════════════╩══╬═ ║ c_1: ════════════════════════════════════════════╩═ ``` #### step 0: variables $$ 0.577 \approx \sqrt{\frac{1}{3}} \\ 0.816 \approx \sqrt{\frac{2}{3}} $$ $$ \begin{split} |\phi\rangle & = \sqrt{\frac{1}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle \\ \\ |u\rangle & = u_0|0\rangle + u_1|1\rangle \end{split} $$ #### step1: H gate and phi state $$ \begin{split} H|\phi\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{3}} \\ \sqrt{\frac{2}{3}} \\ \end{bmatrix} \\ & = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 + \sqrt{2} \\ 1 - \sqrt{2} \end{bmatrix} \end{split} $$ #### step2: the whole quantum equation $$ \begin{split} F(|u\rangle) = & \, CNOT_{(\phi, u)}H|\phi\rangle \otimes |u\rangle \\ \\ = & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ \end{bmatrix} \frac{1}{\sqrt{6}} \begin{bmatrix} 1 + \sqrt{2} \\ 1 - \sqrt{2} \end{bmatrix} \otimes \begin{bmatrix} u_0 \\ u_1 \end{bmatrix} \\ \\ = & \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} (1 + \sqrt{2}) u_0 \\ (1 - \sqrt{2)} u_0 \\ (1 + \sqrt{2}) u_1 \\ (1 - \sqrt{2)} u_1 \\ \end{bmatrix} \\ \\ = & \frac{1}{\sqrt{6}} \begin{bmatrix} (1 + \sqrt{2}) u_0 \\ (1 - \sqrt{2)} u_1 \\ (1 + \sqrt{2}) u_1 \\ (1 - \sqrt{2)} u_0 \\ \end{bmatrix} \end{split} $$ #### step3: calculate the deravitive of quantum equation $$ \frac{dF}{du} = \frac{1}{\sqrt{6}} \begin{bmatrix} (1 + \sqrt{2}) u_0 & 0 \\ 0 & (1 - \sqrt{2)} u_1 \\ 0 & (1 + \sqrt{2}) u_1 \\ (1 - \sqrt{2)} u_0 & 0\\ \end{bmatrix} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up