# Domain AI 應用:透過智能自動化改變行業 :crown: Speaker: <font color="#00bfff">**Leo Chu @Unition**</font> {%hackmd 3_LMFJLvQV-rMOZRjKILnQ %} :raised_hands: Slido: https://app.sli.do/event/62My7psHmtEaaKDXG8baBZ ###### ✦✦✦✦✦ Here we go ! ✦✦✦✦✦ ## Movtivation Traditional Customer Service - 客服 因客戶愈多, 所需要的客服愈多. 想提供線上AI客服 ### Customer Service Adv: Problem-solving Interpersonal interaction Credibility - 有些客戶比較喜歡真人, 不會冷冰冰的 Dis-adv: High Cost Low Efficiency Inconsistency Limited Working Hours -- ### **AI** Customer Service Adv: Cost-effectiveness Real-Time responses Scalability Automation Dis-adv: Lack of emotions and personalization Limited responses > 只能回應訓練的資識 --- ## How to feed knowledge to GPT Model 1.Weight 2.Input ### Via model weights - fine-tuning 1. Like a lone term memory 2. High cost on prepare data 3. Fine-tuning is better suited to teaching specialized task or styles , and is less reliable for factual ### Via model inputs 1. message inputs are like short-term memory 2. open book exam demo : ask with article --- ## Tokens 沒法一次給這麼多token , 就算是有也是挺花錢的. What is token? : 處理文本的最小單位, 使用者輸入內容. e.g. 一個中文字2個token Token Limit: GPT3.5: 4,096 tokens GPT4 GPT3.5-16k GPT4-32K ## Embedding Data 1. Convert document/input to vector 做向量化時保持原本的特徵, 然後做比較. 2. Calculate similarity 我們怎麼做比較的呢? Consine Similarity 比對相似度的概念: RBG model Red : [255,0,0] , Pink [255,105, 180] Consine = 0.77 > Consine做完的range 0 ~ 1, 0.77 算高的了. 意思是紅跟粉紅很像 --- ## Embedding Search 1. Prepare search data 2. Search 3. Ask ### Prepare search data 1. Collect 2. Chunk 3. Embed 4. Store ### Search 1. Given a user question 2. Generate an embedding for the query 3. Rank the text sections 4. Insert the question and the most relevant sections 5. Return GPT's answer Demo : Failed , Not working 來個掌聲. 在DB就2個欄 , content & 向量 --- # Prompt 需要精準的描述, 才能完成合理的任務 OpnenAI Prompt Types 1. System Role 2. Assistant Role 3. User Role --- # Open AI Why Azure Open AI | |Embedding Search | Cognitive Search| | -------- | -------- | -------- | | Multi-lang | X | V | | Cost for preprocessing Data | V | X | | Support Differnt Type input | X | v | Security How Azure Open AI work flow : Questoin -> Query from DB as `Knowledge` -> Prompt + `Knowledge` Demo : Fail (請自行想像) --- 有提供API 做Embed 嗎? yes , 且可以自己選擇等級 Ada or 達文西 可以處理一段文字. Leo : 建議在演講前, 記得先在現場試過Demo先