Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hello tutor! I was just wondering if you could help me with this new concept we learned in my Calculus class yesterday I think I understand it, but I want to make sure. </div></div> <div><div class="alert blue"> Hello student! I would be more than happy to help you. What is it that you learned? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I believe it was about Linear Approximation. I understand how we find the equation of the tangent line, but I don't understand how we use it to etsimate the value of more difficult problems that would otherwise need a calculator. </div></div> <div><div class="alert blue"> Ok... first tell me what you do know and understand. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I know how to find the equation for a tangent line using the formula: $y=f(a)+f'(a)(x-a)$ And when given a function I know how to find $L(x)$. But I don't understand how the Linear Approximation formula is used to find values for "ugly" numbers. </div></div> <div><div class="alert blue"> Ok. So, using the linear approximation of a function to estimate more difficult values of that function comes from looking at a graph. If we can identify a point on the tangent line that is really close to that equivalent x-value on the function, than that y-value on the tangent would be pretty close to that y-value on the function. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh... I see. Could you give me an example? </div></div> <div><div class="alert blue"> Sure. Let's say we have the function $f\left(x\right)=\sqrt[3]{x}$ and its derivative is $f'\left(x\right)=\frac{1}{3\sqrt[3]{x^2}}$ at $x=1000$. What is the Linear Approximation? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $L(x)=f(a)+f'(a)(x-a)$ $L(x)=\sqrt[3]{1000}+\left(\frac{1}{3\sqrt[3]{1000^2}}\right)(x-1000)$ $L(x)=10+\frac{1}{300}x-1000$ I think... </div></div> <div><div class="alert blue"> Yes! Now if I told you to give me the y-coordinate, $f(x)=\sqrt[3]{1003}$, it would be extremely difficult to do without a calculator. However, using the Linear Approximation of x, we can estimate a coordinate on the tangent line of the function that is really close to $\sqrt[3]{1003}$. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Mmm... </div></div> <div><div class="alert blue"> So, being that $f(x)=\sqrt[3]{1003}$ we know x, in the instance is equal to $1003$. We then plug that into our equation $L(1003)=10+\frac{1}{300}(1003-1000)$ Then solve. $L(1003)=10.01$ therefore, $f\left(1003\right)\sim10.01$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Ohhhhh...that makes sense. You're not calculating the exact answer, you're just estimating based on the tangent since graphically it is so close. </div></div> <div><div class="alert blue"> Exactly. Good job </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Thanks for helping me understand. </div></div> <div><div class="alert blue"> No problem! </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.