# Quantum Error Correction - **Problem:** the quantum computer cannot be isolated from the environment, therefore, operations can be faulty. This leads to errors in quantum gates, initial state preparation, measurements. - *classical*: redundancy (by copying) - but in quantum cases, by measuring $\alpha|0\rangle+\beta|1\rangle$ will lose the information about $\alpha$ and $\beta$ - even worse for entangled state $\alpha|000\rangle+\beta|111\rangle$ - *Quantum challenges*: - not only bit flip error, but also phase flip or both - errors continuous $U(t)=e^{-iHt}$ - **Effective error model**: Stochastic independently distributed $X,Y,Z$ errors with probability $p$ ### $3$-qubit code - Idea: distribute one qubit $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ over $3$ physical qubits. - basis state / codewords $|0\rangle=|000\rangle,|1\rangle=|111\rangle$ - span codespace $$\begin{aligned}|\psi\rangle_L&=\alpha|0\rangle+\beta|1\rangle\\ &=\alpha|000\rangle+\beta|111\rangle\end{aligned}$$ 1. Encoding: $C_1NOT_2$ and $C_1NOT_3$ on $|\psi\rangle|0\rangle|0\rangle\rightarrow |\psi\rangle_L$ 2. possible occurance of errors: - e.g. bit flip error $\alpha|000\rangle+\beta|111\rangle\xrightarrow[]{X_1}\alpha|100\rangle+\beta|011\rangle$ - by measuring: collapse onto $|011\rangle$ or $|100\rangle$ and lose the information about $\alpha$ and $\beta$ - **Solution** indirect measuremnt via ancilla qubits. Apply $C_1NOT_3, C_2NOT_3$ on state $|a\rangle|b\rangle|0_C\rangle$ and measuring $|0_C\rangle$ where $|0_C\rangle$ is an ancilla state. If $|ab\rangle=|00\rangle$ or $|ab\rangle=|11\rangle$, $|0_C\rangle$ will not change. $\Rightarrow$ even parity If $|ab\rangle=|01\rangle$ or $|ab\rangle=|10\rangle$, $|0_C\rangle$ will change to $|1_C\rangle$. $\Rightarrow$ odd parity - general consideration: consider $n$-qubit operation $U$ with eigenvalues $\pm 1$ $$\begin{aligned}|0\rangle|\psi\rangle&\xrightarrow[]{H_1}&1/\sqrt{2}(|0\rangle+|1\rangle)|\psi\rangle\\ &\xrightarrow[]{Controlled-U}&1/\sqrt{2}|0\rangle|\psi\rangle+1/\sqrt{2}|1\rangle U|\psi\rangle\\ &\xrightarrow[]{H_1} & 1/2(|0\rangle+|1\rangle)|\psi\rangle+1/2(|0\rangle-|1\rangle) U|\psi\rangle \\ & &=|0\rangle (1/2)(\mathbb{I}+U)|\psi\rangle+|1\rangle (1/2)(\mathbb{I}-U)|\psi\rangle\end{aligned}$$ where $(1/2)(\mathbb{I}\pm U)$ is $P_\pm:$ projector operator on the $\pm 1$ eigenspace of $U$ $\Rightarrow$ realize a measuremnt of $U$ For $U=Z_1Z_2$ $\Rightarrow$ This is a contrast to measure $Z_1$ and $Z_2$ individually. - Two ancilla qubits $$\begin{aligned}|\psi\rangle|00\rangle\xrightarrow[]{error}&|\psi'\rangle|00'\rangle|00\rangle_{ancilla} \\ \xrightarrow[]{C_1NOT_4, C_2NOT_4, C_2NOT_5, C_3NOT5}&|\psi'\rangle|00'\rangle Z_1Z_2|0\rangle Z_2Z_3|0\rangle \\ \xrightarrow[]{correction}& |\psi''\rangle|00''\rangle\end{aligned}$$ | $Z_1Z_2$| $Z_2Z_3$ | error/correction | |--| --|--| |$1$ |$1$ | $\mathbb{I}$| |$-1$| $1$| $X_1$ | |$-1$| $-1$| $X_2$ | |$1$| $-1$| $X_3$ | > correct only **one** $X$-error on any of the gate > If there are two $X$-errors, then QEC fails > If there are three, then it cannot be detected - *$3$-qubit code is not a complete code* - <ins>Robustness</ins> $3$-qubit code better than one qubit? - error model: - bit flip error: $p$ - no error: $1-p$ - probability to correct: $$p_{correct}=(1-p)^3+3p(1-p)^2$$ no error on $3$ qubits + the probability of one $X$ error $$p_{fail}=3p^2(1-p)+p^3$$ - For $p<1/2$, $p_{correct}>(1-p)$ where $(1-p)$ is the probability of single qubit which successes. $\Rightarrow$ $3$-qubit is better than single qubit. - How to increase robustness? 1. $5$-qubit code $p_{correct}^{(5)}\geq p_{correct}^{(3)}$ for small $p$ 2. contatenation Encode codes in codes in codes.... $$p_{fail}^{(n)}=3(p_{fail}^{(n-1)})^2-2(p_{fail}^{(n-1)})^3\leq 3 (p_{fail}^{(n-1)})^2$$ For $n$ layers of concatenation: $$p_{fail}^{(n)}\leq\frac{1}{3}(3p)^{2^n}$$ $\Rightarrow p_{fail}\rightarrow 0\text{ for }p\leq 1/3$ > double-exponentially fast in the number of layers $n$ > ### Stabilize Formalism - Idea: Fix and describe quantum state by set of commuting observations rather than explicit quantum state vector. - allows us to describe a larger class of multi-qubit states. - Example: - Stabilizer state: $|\Phi^+\rangle=1/\sqrt{2}(|00\rangle+|11\rangle)$ - Stabilizer: $S_1=Z_1Z_2, S_2=X_1X_2$ - $S_1S_2=S_2S_1$, they can commute with each other i.e. $[S_1,S_2]=0$ - $|\Phi^+\rangle$ has unique eigenstate $|\psi\rangle$ $S_1|\psi\rangle=|\psi\rangle\\S_2|\psi\rangle=|\psi\rangle$ - $S_1, S_2$ generates a $2^2=4$ Abelian group: $$\{\mathbb{I},Z_1Z_2,X_1X_2,-Y_1Y_2\}$$ - Generalization of $n$-qubit - $n$ generators $S_1,...,S_n$ - $2^n$ stabilizer operators - $S_i|\psi\rangle=|\psi\rangle,\ \forall\ i$ - Stabilizer QEC code: - $\{S_i\}$ with $[S_i,S_j] = 0,\ \forall\ i,j$ - $O_L$: logical operatoers $Z_L, X_L$, with $[O_L,S_i]=0$ - $\{Z_L,X_L\}=0$ - Quantum hamming bound: - How large must a $\mathcal{H}$ space be, so that we can accomadate QEC codes: - $n$-qubit, $k$ encoded for up to $t$ errors. - if $j$ errors, $j\leq t$ $$\sum_{j=0}^t{n\choose j}3^j\cdot 2^k\leq 2^n\\\text{ called Quantum Hamming Bound}$$ ${n\choose j}:j$ errors occur in $n$-qubits $3^j:$ $X,Y,Z$ errors $2^k:$ error codespace to an $2^k$ dimension orthogonal subspace - for 1 logical qubit $k=1$, 1 arbitrary correctable error $t=1$ $$2(1+3n)\leq2^n$$ $\Rightarrow n\geq 5$ qubits needed for smallest <ins>complete</ins> code. - *9*-qubit shor code: - $$\begin{aligned}|\psi\rangle_L&=\alpha(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)/\sqrt{8}\\ &+\beta(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)/\sqrt{8}\end{aligned}$$ - Bit flip errors $X_i$ can be detected by $\{Z_1Z_2, Z_2Z_3,Z_4Z_5,Z_5Z_6,Z_7Z_8,Z_8Z_9\}$ - phase flip errors $Z_i$ can be detected by $\{X_1X_2X_3X_4X_5X_6,X_4X_5X_6X_7X_8X_9\}$ detect the sign of any of three qubits. - after detecting a phase flip in the first block, we don't know which qubit but we can applying $Z_1$-correction we get the same correct state. - **Property:** - complete code - <ins>degenerate code</ins>: several errors have the same effect on logic state e.g. $Z_1, Z_2$ - Correction works: $$\text{attempt + error = identity or stabilizer}$$ ### Quantum Fault Tolerance - **Problem:** Errors can occur before encoding or during encoding - <ins>uncontrolled error propagation</ins> - example $(C_1NOT_2)X_1=X_1X_2(C_1NOT_2)$ $X$ error propagates from a controlled qubit through $CNOT$ gate onto a target qubit ( propagate errors from $X_1$ to $X_2$) - Fault Tolerant quantum circuit construction: avoid error spread, infection - $7$-qubit scheme code - possible, but requires non-local gates, resource overhead ### Topological QEC - idea: quantum information spread out **globally**, to protect against **local** errors. - no concatenation - increase the size of lattice to increase robustness - no braiding for gates ### Kitaev's toric code - $L\times L$ square lattice with physical qubits located on the edges - Codespace: $S_Z^{(i)}|\psi\rangle=S_X^{(j)}|\psi\rangle=|\psi\rangle$ - Periodic boundry conditions: lattice is embedded on the surface of a torus. $\Rightarrow$ Toric code - number of qubits and operatoins: - $L^2$ plaquette $\Rightarrow$ $2L^2$ physics qubits - $L^2$ plaquette $\Rightarrow$ $L^2$ $Z$-stabalizer - $L^2$ plaquette $\Rightarrow$ $L^2$ $X$-stabalizer - not all stabilizers are independent: $$\prod_i S_Z^{(i)}=\mathbb{I}\Rightarrow\prod_i^{L^2-1} S_Z^{(i)}=S_Z^{(L^2)}$$ - only $L^2-1$ independent $Z(X)$-stabalizers. - $k=$ number of logic qubits$=(\#$physical qubits$)-(\#$independent stabalizer constrains$)=2$ (encoded qubits) > Topological property: independent of size, lattice structure - minimum-weight perfect matching (MWPM) - logic quantum computations: transversal gates - **Transversality:** logic operations = bitwise physical operations (local operations) $$H^{\otimes n}=H_1\otimes H_2\otimes...\otimes H_n$$ if one $H_i$ is wrong, only effect one qubit $\Rightarrow$ Fault Tolerant