# Functional Analysis Training ### 2024 - AI use to interprete images ? - How we do? - What can we do? - How accurate ? - https://www.nature.com/articles/s41698-024-00576-z ------ ### Contribuitors - Bruna Piereck - Janick Mathys - Mainak ### About the Course - Title suggestion: Gene annotation and the biology behind genes - 2 full days - Anyone working with nucleotide (DNA,RNA) and proteine sequencing - Beginner - ### To be approched #### Introduction - OMICS - What is gene annotation - - How this helps understanding the biology behind the genes - What is functional and motif analysis - What and When we do Funct. analysis - Diff. levels of annotations #### Hands on activities and topics - - Overrepresentation analysis - GO enrichment - What is gene ontology? - Gprofiler (Human, mouse, rat) - WEbgeshallt (Human, mouse, rat) - EnrichR (Humna, mouse, rat) - toppgene (Human, mouse, rat) - Gene ontology (All) - How to make it visual? - PLAZA (For plants) - Gene enrichment - background (full set) vs Genes set (selected group) - statical comparison - Network analysis - analysis - vizualization - From genes to pathways - map genes to pathways - topology stucture of pathway - String - KeGG - Reactome - PESCADOR - IPA (mentioning) - Human, Mouse, rt - Payed (VIB4free) - More info: Stephane Plaisance - Expression - DESeq2 - EdgeR - Quantifications - Abundance - Quality control - Motifs (?) > the last might too complex for this session - Examples - Human/Animal example - Plants example - Bac. example - Non-model organism example - Diff conditions > Activities online and ofline > No command line for this training (For advanced connected with Python) ### General thoughts - [MaxQuant](https://www.maxquant.org/) - list of peptides - Raw data (csv, txt) ## Functional annotation Resources - DESeq2 - EdgeR - Annotation - Abundances - Enrichment vs topology - Enrichment Bags of genes - Gene ontology annotation - GO-slims - Subset of GO (more useful information less general, less specific) - Not everything is maintened - REViGO - Non redundant GO terms - http://revigo.irb.hr/ - http://geneontology.org/ ### Data that can be used - [Previous Course e-leanring](https://elearning.bits.vib.be/courses/ngs-analysis/) - Previous Course live sessions - [youtube fastQC](https://youtu.be/6wADdc6IQ8o) - [youtube galaxy filtering and trimming]( https://youtu.be/ExZY9ZxIfUc) - [youtube mapping DNA](https://youtu.be/F4IhjKv35Mk) - [youtube mapping RNAseq](https://youtu.be/9sM6JgBbIiE) - bulk RNAseq training dataset - Slides in the e-mail - Table sheets in the e-mail - [NCBI](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1275864) - [EBI](https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEOD-52778#Protocols) - [Single cell dataset markers gene symbol](https://pubmed.ncbi.nlm.nih.gov/33782623/) - [bulk RNAseq slides](https://elearning.bits.vib.be/courses/bulk-rnaseq-analysis/) - [wiki RNAseq analysis]( https://wiki.bits.vib.be/index.php/NGS_data_analysis#Training_3:_RNA-Seq_analysis) - [interesting tool for cancer research](https://f1000research.com/articles/10-416) - [Functional analysis slides](http://data.bits.vib.be/pub/trainingen/Functional/Functional.pptx ) > No longer pub, needs to log in to find it. Check later with Alex. - [e-learning (work in progress)](https://elearning.bits.vib.be/courses/functional-analysis/) - [wiki enrichement analysis](https://wiki.bits.vib.be/index.php/Functional_annotation_and_enrichment_analysis) ### Papers and websites consulted - A Literature Review of Gene Function Prediction by Modeling Gene Ontology https://www.frontiersin.org/articles/10.3389/fgene.2020.00400/full https://doi.org/10.3389/fgene.2020.00400 - Gene Ontology knowledgebase http://geneontology.org/ (accessed in june 2023) - Gene enrichemnt and over-representation - https://learn.gencore.bio.nyu.edu/rna-seq-analysis/over-representation-analysis/ - https://alexslemonade.github.io/refinebio-examples/03-rnaseq/pathway-analysis_rnaseq_01_ora.html - http://revigo.irb.hr/ Paramtric vs non-parametric test - https://www.ibm.com/docs/en/db2woc?topic=procedures-statistics-parametric-nonparametric - Gene Ontology - Searching GO - Overrepresentation analysis - Gene enrichment - Pathways (Network) information - Differences between Organism with and without reference