## 真空蒸鍍實驗 ### vacuum thermal evaporation deposition --- ## 原理 - 電流熱效應 加熱蒸發銅 - 銅液體蒸氣,附著在玻璃基板上 - 較低沸點的雜質先蒸發 - shutter擋雜質 - mask決定鍍的圖案 - why vacuum? : 若氣體分子過多,會散射銅蒸氣 (銅氣體分子平均自由徑過小),鍍的效果不好。 --- ## How to measure the thickness? ![](https://i.imgur.com/ijeDRPJ.jpg =30%x) - Thickness monitor - circular quartz(石英) sensor (same height as the glass substrate) - oscillation frequency --- ## Procedure 1.Cleanse the glass substrate - 玻璃基板 - 燒杯 - 超音波洗淨器 - 氮氣槍 - 加熱板 --- ## Procedure 2.Set the thickness monitor - **XLAL LIFE** (看壽命) - **TEST** -> (RATE,THICKNESS)=(MHZ.life,freq) - **MATL DENSITY** = 8.93 g/cm$^3$ - **ACOUSTIC IMPEDANCE** = 20.21 - **START** and open the shutter - **STOP** when the measurement ends --- ### pumping explained --- 1) mechanical pump ![](https://i.imgur.com/n6uvPVG.jpg =30%x) ![](https://i.imgur.com/7Xy7nTN.jpg =30%x) - 真空腔裡的氣體從進氣口流入幫浦腔 - 不對稱轉子封住進氣口,打開排氣口 --- 2) Diffusion pump ![](https://i.imgur.com/gYKYC78.jpg =30%x) - 油槽(加熱器)加熱幫浦油,多級噴嘴向下噴出 - 氣體分子被油蒸氣撞擊,往下帶,由右端排氣孔排出 - 冷卻水冷凝油氣 --- ![](https://i.imgur.com/bHra0dn.jpg =65%x) - 開1,關2,3 - pressure $<10^{-2}$ 開冷卻水,關1,開2 - 開diffusion pump 加熱電源15mins - 開1(5mins) - 關1,開3 --- ## Procedure 3. 蒸鍍系統操作程序 --- ## 實驗前檢查 ![](https://i.imgur.com/bHra0dn.jpg =60%x) - 打開空壓機,所有電源OFF - diffusion pump 冷卻 - 關閥1、閥2及閥3,打開洩氣閥1 --- - 舉起真空腔上蓋 - 戴上拋棄式乳膠手套 - 處理視窗玻璃 - 腔體無油汙 --- ## 設置樣品 - 銅粒 - 洗淨的玻璃x2與mask - 真空腔上下盤清潔 - 闔上真空蓋 --- ## 開始抽氣 ![](https://i.imgur.com/bHra0dn.jpg =60%x) - 確認閥2及閥3關上,再將機械幫浦之排氣管拉至抽風櫥中 --- ![](https://i.imgur.com/bHra0dn.jpg =60%x) - 關洩氣閥1,打開機械幫浦開始抽真空, - 1min後,開閥1 (至$10^{-2}$Torr) - 15min後(壓力$<5\times10^{-3}$ Torr),關閥1,開閥2和冷卻水 --- ![](https://i.imgur.com/bHra0dn.jpg =60%x) - 開真空計、壓力控制器電源和歐姆計暖機 - 0.3mm,7cm去漆漆包線x8 - 確認閥3關上,開閘刀式開關 - 16min後,開閥1,等5min --- ![](https://i.imgur.com/bHra0dn.jpg =60%x) - 關閥1,再開閥3 - 當壓力低至$1\times10^{-3}$ Torr,關熱偶壓力計,開冷極壓力計 - 當壓力低於$6\times10^{-5}$ Torr時,關掉冷極壓力計 --- ## 蒸鍍 - 按下薄膜厚度計 - 開閥刀式開關 Heater I,加熱銅粒使其蒸發 (50V) - 10s後,移開shutter - 當銅薄膜厚度約 1000Å時,關shutter、變壓器和閘刀式開關 - 機械幫浦及擴散幫浦繼續抽 10min,烏舟電極冷卻 --- ![](https://i.imgur.com/bHra0dn.jpg =60%x) - 薄膜厚度計"STOP"鍵,關閥3 - 關"diffusion pump" 加熱電源 - 等15 min,diffusion pump降溫 (機械幫浦繼續) --- ## 取出樣品 ![](https://i.imgur.com/bHra0dn.jpg =70%x) - 關閥2 (確認閥1及閥3已關) - 開洩氣閥1,洩氣完後即關閉 - 舉起真空腔上蓋,取出玻璃及 Mask 後蓋回 --- ## 復原儀器 - 開閥1將真空腔抽真空 (抽約10分鐘至$10^{-2}$ Torr) - 關閥1,關真空計,關機械幫浦 - 開洩氣閥2,洩氣完後確認關閉 - 水繼續流30分鐘再關 (用手機計時) - 關儀器,拔變壓器插頭,確認所有閥門皆關上 --- ## 準備測電阻率 ![](https://i.imgur.com/bsXPrLg.png =50%x) - 將樣品用雙面膠固定在電木板上 - 將兩端都去好漆的導線,一端伸進博士端子細縫並旋緊,另一端用透明膠帶固定至距電極5mm位置 --- ![](https://i.imgur.com/bsXPrLg.png =50%x) - 剪4小粒銦線(0.5mm*1mm)在漆包線與樣品將接觸的四點,用鋼針的扁平端將其壓扁,將漆包線弄個小倒鉤固定 - 再剪四小粒銦線將漆包線壓在剛才銦線壓扁的位置(可用銀膠取代銦) - 用手持式電錶測試導通性 --- ## 電阻率及 Hall 測量 - 用歐姆定律 $R=\frac{\rho L}{A}$ (L= 11.5 $\pm$ 0.02 mm, A=膜厚*3 $\pm$ 0.02 mm) 測量昆蟲形狀 mask 所鍍出銅的電阻率 - 用 van der Pauw 四點量測法,測量圓形銅的電阻率 - 用 van der Pauw 方法及永久磁鐵,量測遷移率、霍爾係數及載子濃度 --- ## 四點量測法 ![](https://i.imgur.com/eg1RpOA.jpg =50%x) - 用途 : 測量特殊形狀樣品的電阻率 (常將金屬切成條狀) - 用歐姆定律 $R=\frac{\rho L}{A}$ 算出電阻率 --- ## van der Pauw 四點法 - 用途 : 測量任意形狀(半)導體平板之電阻率 - 四個限制: - 量測的四個接觸點的位置要在樣品平板的邊緣處 - 黏接的接觸點面積必須非常小 - 樣品平板的厚度必須非常均勻 - 帶測平板的表面必須是 singly connected, 即沒有 isolated hole --- ## van der Pauw 四點法 ![](https://i.imgur.com/qGnfsNq.png) $e^{-\pi R_{AB,CD}d/\rho}+e^{-\pi R_{BC,DA}d/\rho}=1 ...(1)$ $R_{AB,CD}$ : A,B 通入電流,C,D 量測電壓所得電阻 $\rho$ :電阻率,d : 樣品的厚度 --- ## van der Pauw 四點法 化簡的公式 : $\rho=\frac{\pi d}{ln 2} \frac{R_{AB,CD}R_{BC,DA}}{2}f(\frac{R_{AB,CD}}{R_{BC,DA}})$ ![](https://i.imgur.com/u56qiuG.png) --- ## 霍爾效應(B5-2) - 現象 : 將導體通以電流,外加與電流垂直之磁場,發現在與電流及磁場都垂直的方向可以量到電壓 - 重要參數 : - 霍爾遷移率 $\mu_H$ - 霍爾參數 $R_H$ - 載子濃度 $n$ --- ### 一些關係式 1. $R_H=\frac{E_y}{J_x B}=\frac{1}{ne}$ 3. $\vartriangle V=\mu B I \frac{\rho}{d}$ 4. $\mu \rho=R_H$ $\rho:$電阻率 , e: 電子電量 $E_y:$橫向電場, $J_x:$電流密度 $\vartriangle V:$橫向電位差 , d: 薄膜厚度 --- ## Hall bar 量測法 ![](https://i.imgur.com/OwvrqUn.jpg =70%x) - 用途 : 對長條狀樣品進行霍爾量測 - 電流由 1 流入,由 6 流出 - 在外加磁場下量測 3 和 4 之間的霍爾電壓 - 在無外加磁場下量測 2 和 5 之間的電阻,可得電阻率 --- ## van der Pauw 量測法 - 用途 : 形狀不規則的樣品(條件與 van der Pauw 四點法相同) - $e^{-\pi R_{AB,CD}d/\rho}+e^{-\pi R_{BC,DA}d/\rho}=1$ - 可由上式求得電阻率 - $\vartriangle$ $R_{BD,AC}$=$\frac{R^+_{BD,AC}-R^-_{BD,AC}}{2}$ - $\mu=\frac{\vartriangle R_{BD,AC}}{B(T) \times R_s} \times 10000 (cm^2V^{-1}s^{-1})$ - $n=\frac{1}{e\rho \mu }(cm^{-3})$ , $\rho: \Omega \ cm$ $\vartriangle R_{BD,AC}$:加磁場前後$R_{BD,AC}$的變化 $R_s=\frac{\rho}{d}$ --- ### 步驟 - 用鋼針或牙籤將銀膠觸碰需要導通與固定的地方(已將漆包線固定好) - 放在強力磁鐵的基座上 - 按 a,b,c,d 圖示,分別量測 $R_{CD,AB}\ ,\ R_{BC,DA}\ ,\ R^+_{BD,AC}\ ,\ R^-_{BD,AC}$ ![](https://i.imgur.com/gyGn0PU.jpg =50%x) --- ## 計算 1. $\vartriangle$ $R_{BD,AC}$=$\frac{R^+_{BD,AC}-R^-_{BD,AC}}{2}$ 2. $R_s=\frac{\rho}{d}$ 3. $\mu=\frac{\vartriangle R_{BD,AC}}{B(T) \times R_s} \times 10000 (cm^2V^{-1}s^{-1})$ 4. $n=\frac{1}{e\rho \mu }(cm^{-3})$ , $\rho: \Omega \ cm$ 5. $R_H=\mu \rho$ --- ## 第二周 - 重複第一周實驗,蒸鍍銅300埃 - 向助教要0.1mm 的薄片,做四點量測 - 比較電阻率與公認值是否吻合 - 比較不同厚度的樣品之電性量測結果 --- # 問題討論 --- ## 1. 簡述其他抽真空的方法及原理 - 撞濺離子幫浦 - 冷凍幫浦 --- ## 撞濺離子幫浦 ![](https://i.imgur.com/me8r90R.png) --- ## 撞濺離子幫浦 ![](https://i.imgur.com/a92W6V8.png =80%x) --- ## 冷凍幫浦 ![](https://i.imgur.com/0YNzIDK.png) --- ## 冷凍幫浦 ![](https://i.imgur.com/xCLANXu.png) --- ## 冷凍幫浦 ![](https://i.imgur.com/1IG4kyL.png) --- ## 冷凍幫浦 ![](https://i.imgur.com/f1cvEsU.png =70%x) --- ## 2. 除了蒸鍍外的製作薄膜方法 - 直流(磁控)濺鍍 - 交流(磁控)濺鍍 --- ## 直流磁控濺鍍 --- ## 交流濺鍍 --- # 補充 --- ## 兩點量測法 ![](https://i.imgur.com/nfJc6we.jpg =50%x) - 缺點: 不適合量測電阻率極小(與導線差不多)的樣品電阻 --- ## van der Pauw 四點法推導 $e^{-\pi R_{AB,CD}d/\rho}+e^{-\pi R_{BC,DA}d/\rho}=1 ...(1)$ 1. 先證明對半無線大平面成立 2. 利用 comformal mapping 推廣至任意平面 --- ![](https://i.imgur.com/EU1jAXY.jpg) --- ![](https://i.imgur.com/KtKfuuu.jpg) --- ![](https://i.imgur.com/NC2rAtt.jpg) --- ## 2. comformal mapping - let the semi-infinite plane be the upper-half of z-plane, where z=x+iy - consider f(z)=u(x,y)+iv(x,y), where u is the potential function on the sample, and they satisfy the Cauchy-Riemann relation: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ --- ![](https://i.imgur.com/dl0g9br.png =50%x) - if we integrate along the x-axis, v will remain constant unless it go through P and Q. If we integrate a small semi-circle around P, v will increase $\frac{\rho j}{d}$. (for Q, -$\frac{\rho j}{d}$) --- - exists a comformal mapping maps z-plane onto the sample in the t-plane. Particularly, let (P,Q,R,S) be mapped to (A,B,C,D). - let k(t)=l+im=f(z(t)). we know m varies similarly as v on the boundary, (l,m) satisfy the Cauchy-Riemann relation, and l satisfies the Laplace equation. So l can be interpreted as the potential function on the sample in t-plane. - find a semi-infinite plane s.t. $\frac{\rho j}{d}=\frac{\rho ' j'}{d'}$, then the potential on (A,B,C,D) are the same as (P,Q,R,S)'s, so the equation still is still satisfied. --- ### van der Pauw on measuring Hall coefficient $\mu_H=\frac{d}{B}\frac{\vartriangle R_{BD,AC}}{\rho}$ - first we note that j(current density) is unchanged after applying the magnetic field, since - $\vartriangle \cdot j=0$ - $\vartriangle \times j=0$ - the boundary condition unchanged --- ![](https://i.imgur.com/4zEyRTy.png =50%x) - the hall effect induced the hall electric field perpendicular to j: $E_H=\frac{jB}{nq}$ - so the electic field would not parallel to the current density anymore, to compensate $E_H$. --- ![](https://i.imgur.com/tlIlHuQ.png) then we get the equation : $\mu_H=\frac{d}{B}\frac{\vartriangle R_{BD,AC}}{\rho}$ --- ## 霍爾係數 ![](https://i.imgur.com/uiXNSEG.png) --- ## 參考資料 - http://www.phys.nthu.edu.tw/~thschang/notes/VAC03.pdf - https://aki.issp.u-tokyo.ac.jp/okano/WalWiki/etc/VDP_PRR_13_1.pdf - https://web.archive.org/web/20150824054524/http://electron.mit.edu/~gsteele/vanderpauw/vanderp - http://ezphysics.nchu.edu.tw/prophys/basicexp/expnote/hall/hall_97Feb.pdf
{"metaMigratedAt":"2023-06-17T09:28:31.978Z","metaMigratedFrom":"YAML","title":"問題討論","breaks":true,"contributors":"[{\"id\":\"5ab2b7f1-0f25-453a-8b36-3ef9e12ff943\",\"add\":5901,\"del\":69},{\"id\":\"029f2767-1506-410d-a68c-2b035cbc9559\",\"add\":1304,\"del\":276},{\"id\":\"8b324edc-ebe4-4031-a593-2e1a93cf0a51\",\"add\":1329,\"del\":136}]"}
    735 views
   Owned this note