# Deep Learning important Channels and Courses
---
[toc]
---
## Channels
### General
#### Deeplearning ai
- https://www.youtube.com/channel/UCcIXc5mJsHVYTZR1maL5l9w/playlists
#### Hung-yi Lee
- https://www.youtube.com/c/HungyiLeeNTU/playlists
#### Hsuan-Tien Lin
- https://www.youtube.com/c/hsuantien/playlists
#### Yannic Kilcher
- https://www.youtube.com/c/YannicKilcher/playlists
#### Siraj Raval
- https://www.youtube.com/c/SirajRaval/playlists
-
#### KDD2016 video
- https://www.youtube.com/c/KDD2016video/playlists
### Computer Vision(3D)
#### sentdex
- https://www.youtube.com/c/sentdex/playlists
#### Anuj shah
- https://www.youtube.com/c/Anujshah_Deep_Learning_Garage/playlists
### Computer Graphics
#### Two Minute Papers
- https://www.youtube.com/c/K%C3%A1rolyZsolnai/playlists
### Speeches
#### Foundations of Deep Learning (Hugo Larochelle, Twitter)
- https://youtu.be/zij_FTbJHsk
#### Deep Learning for Computer Vision (Andrej Karpathy, OpenAI)
- https://youtu.be/u6aEYuemt0M
#### Deep Learning for Natural Language Processing (Richard Socher, Salesforce)
- https://youtu.be/oGk1v1jQITw
#### TensorFlow Tutorial (Sherry Moore, Google Brain)
- https://youtu.be/Ejec3ID_h0w
#### Foundations of Unsupervised Deep Learning (Ruslan Salakhutdinov, CMU)
- https://youtu.be/rK6bchqeaN8
#### Nuts and Bolts of Applying Deep Learning (Andrew Ng)
- https://youtu.be/F1ka6a13S9I
#### Deep Reinforcement Learning (John Schulman, OpenAI)
- https://youtu.be/PtAIh9KSnjo
#### Theano Tutorial (Pascal Lamblin, MILA)
- https://youtu.be/OU8I1oJ9HhI
#### Deep Learning for Speech Recognition (Adam Coates, Baidu)
- https://youtu.be/g-sndkf7mCs
#### Torch Tutorial (Alex Wiltschko, Twitter)
- https://youtu.be/L1sHcj3qDNc
#### Sequence to Sequence Deep Learning (Quoc Le, Google)
- https://youtu.be/G5RY_SUJih4
#### Foundations and Challenges of Deep Learning (Yoshua Bengio)
- https://youtu.be/11rsu_WwZTc
#### 還有 Ian Goodfellow 關於 GAN 的演講:
- https://www.youtube.com/watch?v=HN9NRhm9waY
---
## Courses
### Introduction course
#### Deep learning ai by Prof. Ng
- https://bit.ly/2ESEiJv
#### Introduction to Deep Learning by Prof. Raj from CMU
- https://bit.ly/2Wpz03d
#### Representation Learning by Prof. Courville from MILA
- https://bit.ly/2QM2fH6
---
### Deep Learning Theory
#### Topics course Mathematics of Deep Learning by Prof. Bruna from NYU Courant
- https://bit.ly/2Z9JUHe
#### Science of Deep Learning: Bridging Theory and Practice by Prof. Mądry&Daskalakis from MIT
- https://bit.ly/2wEIXKO
---
### Learning Techniques
#### CS294-158 Deep Unsupervised Learning by Prof. Abbeel from UC Berkeley
- https://bit.ly/2TODPfW
#### CS294-112 Deep Reinforcement Learning by Prof. Levine from UC Berkeley
- https://bit.ly/2Jde9pN
#### CS 236: Deep Generative Models by Prof. Ermon & Grover from Stanford
- https://bit.ly/2ZahXPg
#### CS 330: Multi-Task and Meta-Learning by Prof. Finn from Stanford
- https://reurl.cc/9zO5QV
---
### Computer Vision
#### CS 131 Computer Vision: Foundations and Applications by Prof. Fei-Fei Li et al. from Stanford
- https://stanford.io/2K4BjC2
#### CS231n: Convolutional Neural Networks for Visual Recognition by Prof. Fei-Fei Li et al. from Stanford
- http://cs231n.stanford.edu/
#### Deep Learning for Computer Vision(University of Michigan)
- https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/
#### CS391R: Robot Learning (University of texas at Austin)
- https://www.cs.utexas.edu/~yukez/cs391r_fall2020/index.html
#### ADL4CV - Advanced Deep Learning for Computer Vision - Technical University Munich - Prof. Leal-Taixé and Prof. Niessner (WS20-21)
- https://www.youtube.com/playlist?list=PLog3nOPCjKBkngkkF552-Hiwa5t_ZeDnh&fbclid=IwAR1Fy-SLtlqZYP1jycumnG42HNll2omg53vAIE8zr3NV3jEpxlVglgpj9r4
#### CV3DST - Computer Vision 3: Detection, Segmentation and Tracking - Technical University Munich - Prof. Leal-Taixé (SS20)
- https://www.youtube.com/playlist?list=PLog3nOPCjKBneGyffEktlXXMfv1OtKmCs&fbclid=IwAR3eFhq-T0etvr3qLU5IPxOKsn8RbFBuJHhwiR0vCNi37yOcFPla-ytEY-g
---
### Natural Language Processing
#### CS224n Natural Language Processing with Deep Learning by Prof. Manning from Stanford
- https://stanford.io/2lNGlER
#### Deep Natural Language Processing by Prof. Blunsom et al. from DeepMind & Oxford
- https://bit.ly/2kh4Esz
---
### Network Analysis
#### CS224W Analysis of Networks: Mining and Learning with Graphs by Prof. Leskovec from Stanford
- https://stanford.io/2KuPSOH
---
### System of Deep (machine) Learning
#### System for ML by Dr. Tianqi Chen from the University of Washington
- https://bit.ly/2Kwv5KK
#### CS217: Hardware Accelerators for Machine Learning by Prof. Olukoton&Pedram from Stanford
- https://stanford.io/2IlOJ9B
---
### Deep (machine) learning in Biology/Medicine
#### CS273B Deep Learning in Genomics and Biomedicine by Prof. Zhou&Kundaje from Stanford
- https://stanford.io/2Ktqtop
#### CS897Machine Learning for Healthcare by Prof. Songtag & Szolovits from MIT
- https://mlhc19mit.github.io/
---
## Social Mediaes
### Learning By Hacking
- https://www.facebook.com/datasci.info/?ref=page_internal
----