# CH8. Differential and Multistage Amplifiers :::info **Disclaimer** Cases involving BJTs are temporarily omitted, I might work on them someday if I have time. Also, if you spot any error, please contact me via my email: bigbeeismusic@gmail.com ::: ## 8.1 The MOS Differential Pair ![截圖 2025-01-05 凌晨3.21.56](https://hackmd.io/_uploads/Bkxuq-PLkl.png) :::success ++Recall++. common-mode input $V_{CM}$ and differential input $v_{id}$: $v_{G1}=V_{CM}+\frac{v_{id}}{2}$ $v_{G2}=V_{CM}-\frac{v_{id}}{2}$ ::: ### 8.1.1 Operation with a Common-Mode Input Voltage ![截圖 2025-01-05 凌晨3.26.14](https://hackmd.io/_uploads/HyFvsZPU1x.png) ($v_{G1}=v_{G2}=V_{CM}$, $Q_1$ and $Q_2$ are matched$\Rightarrow i_{D1}=i_{D2}=I/2$) $V_S=V_{CM}-V_{GS}$ $i_D=\frac{I}{2}=\frac{k_n'}{2}\frac{W}{L}V_{OV}^2\Rightarrow V_{OV}=\sqrt{\frac{I}{k_n'(W/L)}}$ $V_{D1}=V_{D2}=V_{DD}-\frac{I}{2}R_D$ $V_O=V_{D2}-V_{D1}=0$ :::warning ++Def++. **(Input common-mode range)**: the range of $V_{CM}$ over which the DP operates properly: $V_{CM\max}=V_D+V_t=V_t+V_{DD}-\frac{I}{2}R_D$ ($Q_1$ and $Q_2$ in sat. region) $V_{CM\min}=-V_{SS}+V_{CS}+V_t+V_{OV}$ ($V_{CS}$: needed voltage across current source $I$ to operate properly) ::: ### 8.1.2 Operation with a Differential Input Voltage ![截圖 2025-01-05 凌晨3.48.59](https://hackmd.io/_uploads/Bk0hxGPLJe.png) ($v_{G2}=0$, $v_{G1}=v_{id}\Rightarrow v_{id}=v_{GS1}-v_{GS2}$) :::info ++Observation++. If $v_{id}>0$, then $i_{D1}>i_{D2}\Rightarrow v_{D1}<v_{D2}\Rightarrow v_O>0$ ::: **Find $v_{id}$ s.t. $I$ flows in only $Q_1\Rightarrow v_S=-V_t$**: $I=\frac{1}{2}\left(k_n'\frac{W}{L}\right)(v_{GS1}-V_t)^2\Rightarrow v_{GS1}=V_t+\sqrt{\frac{2I}{k_n'(W/L)}}=V_t+\sqrt{2}V_{OV}$ ($V_{OV}$: overdrive voltage corresponding to $i_D=I/2$) $v_{id\max}=v_S+v_{GS1}=-V_t+V_t+\sqrt{2}V_{OV}=\sqrt{2}V_{OV}$ **The range of differential-mode operation**: $-\sqrt{2}V_{OV}\leq v_{id}\leq\sqrt{2}V_{OV}$ :::info ++Note++. To use DP as a linear amp., keep $v_{id}$ small. ::: ### 8.1.3 Large-Signal Operation ![截圖 2025-01-05 凌晨4.08.46](https://hackmd.io/_uploads/r1GwHzP8Jl.png) ($\lambda = 0$, $v_{id}\equiv v_{G1}-v_{G2}$) $\sqrt{i_{D1,2}}=\sqrt{\frac{k_n'}{2}\frac{W}{L}}(v_{GS1,2}-V_t)\Rightarrow\sqrt{i_{D1}}- \sqrt{i_{D2}}=\sqrt{\frac{k_n'}{2}\frac{W}{L}}v_{id}$ $i_{D1}+i_{D2}=I$ $\Rightarrow 2\sqrt{i_{D1}i_{D2}}=I-\frac{k_n'}{2}\frac{W}{L}v_{id}^2$ $\Rightarrow i_{D1}=\frac{I}{2}\pm \sqrt{k_n'\frac{W}{L}I}\left(\frac{v_{id}}{2}\right)\sqrt{1-\frac{(v_{id}/2)^2}{(I/(k_n'(W/L)))}}$ (take "+" sign) $\Rightarrow i_{D2}=\frac{I}{2}\pm \sqrt{k_n'\frac{W}{L}I}\left(\frac{v_{id}}{2}\right)\sqrt{1-\frac{(v_{id}/2)^2}{(I/(k_n'(W/L)))}}$ (take "-" sign) Substitution using $V_{OV}=\sqrt{\frac{I}{k_n'(W/L)}}$, we get $i_{D1}=\frac{I}{2}+\left(\frac{I}{V_{OV}}\right)\left(\frac{v_{id}}{2}\right)\sqrt{1-\left(\frac{v_{id}/2}{V_{OV}}\right)^2}$ $i_{D2}=\frac{I}{2}-\left(\frac{I}{V_{OV}}\right)\left(\frac{v_{id}}{2}\right)\sqrt{1-\left(\frac{v_{id}/2}{V_{OV}}\right)^2}$ If **$v_{id}\ll 2V_{OV}$**: $i_{D1}\simeq\frac{I}{2}+\left(\frac{I}{V_{OV}}\right)\left(\frac{v_{id}}{2}\right)$ $i_{D2}\simeq\frac{I}{2}-\left(\frac{I}{V_{OV}}\right)\left(\frac{v_{id}}{2}\right)$ $\Rightarrow$ current increment $i_d=\left(\frac{I}{V_{OV}}\right)\left(\frac{v_{id}}{2}\right)$ :::success ++Recall++. $g_m=\frac{2I_D}{V_{OV}}$ for MOS. In DP case, $I_D=I/2$, and transconductance can be expressed as $\Delta i_d/v_{id}$ ::: ![截圖 2025-01-05 凌晨4.38.47](https://hackmd.io/_uploads/HkUu3GP8ye.png) ![截圖 2025-01-05 凌晨4.39.00](https://hackmd.io/_uploads/HJ8O2zv8Je.png) ### 8.1.4 Small-Signal Operation #### Differential Gain ![截圖 2025-01-05 凌晨4.45.31](https://hackmd.io/_uploads/r1CeAfPI1x.png) ($v_{G1}=V_{CM}+\frac{v_{id}}{2}$, $v_{G2}=V_{CM}-\frac{v_{id}}{2}$) :::warning ++Def++. **(Single-ended output)**: $v_{o1}$, $v_{o2}$. **(Differential output)**: $v_{od}=v_{o2}-v_{o1}$ ::: **T-model** ![截圖 2025-01-05 凌晨4.52.08](https://hackmd.io/_uploads/rJfqymDLkl.png) (virtual ground $\Uparrow$ by the symmetric) ($g_m=\frac{2I_D}{V_{OV}}=\frac{I}{V_{OV}}$) $v_{o1}=-g_m\frac{v_{id}}{2}R_D$, $v_{o2}=+g_m\frac{v_{id}}{2}R_D$ **Gain for single-end**: $\frac{v_{o1}}{v_{id}}=-\frac{1}{2}g_mR_D$, $\frac{v_{o2}}{v_{id}}=\frac{1}{2}g_mR_D$ **Differential gain**: $A_d\equiv\frac{v_{od}}{v_{id}}=\frac{v_{o2}-v_{o1}}{v_{id}}=g_mR_D$ :::info ++Note++. Alternative view ![截圖 2025-01-05 清晨5.02.01](https://hackmd.io/_uploads/S150ZQDUyl.png) ::: #### The Differential Half-Circuit ![截圖 2025-01-05 清晨5.04.03](https://hackmd.io/_uploads/BkwLGQwIkg.png) ($Q_1$ is biased at $I/2$ and operating at $V_{OV}$) $\Rightarrow A_d=g_m(R_D\|r_o)$ ### 8.1.5 The Differential Amplifier with Current-Source Loads ![截圖 2025-01-05 清晨5.13.36](https://hackmd.io/_uploads/B1Xc4QDUyl.png) $A_d=g_{m1}(r_{o1}\|r_{o3})$ ### 8.1.6 Cascode Differential Amplifier ![截圖 2025-01-05 清晨5.23.01](https://hackmd.io/_uploads/rJv6IXP8yx.png) :::success ++Recall++. For CG Amp, $R_o=r_o+R_S+g_mr_oR_S$, $R_{in}=\frac{r_o+R_L}{1+g_mr_o}$ ::: $A_d=g_{m1}(R_{on}\|R_{op})=g_{m1}(R_{on}\|R_{op})$ where $R_{op}=g_{m5}r_{o5}r_{o7}$, $R_{on}=g_{m3}r_{o3}r_{o1}$ ## 8.3 Common-Mode Rejection ### 8.3.1 The MOS Case ![截圖 2025-01-05 下午4.29.36](https://hackmd.io/_uploads/BkQWXpw8kl.png) (Current source isn't ideal and have output resistance $R_{SS}$) (common-mode input signal: $v_{icm}$) :::info ++Note++. $R_{SS}$ has **no effect** on $A_d$ (Think about virtual ground!). ::: **T-model and the common-mode half-circuit** ![截圖 2025-01-05 下午4.32.00](https://hackmd.io/_uploads/HJU97awU1e.png) $v_{icm}=i(\frac{1}{g_m}+2R_{SS})\Rightarrow i=\frac{v_{icm}}{1/g_m+2R_{SS}}$ $v_{o1}=v_{o2}=-R_Di=-\frac{R_D}{1/g_m+2R_{SS}}v_{icm}\Rightarrow \frac{v_{o1}}{v_{icm}}=\frac{v_{o1}}{v_{icm}}\simeq-\frac{R_D}{2R_{SS}}$ $v_{od}=v_{o2}-v_{o1}=0\Rightarrow$ **No common-mode gain if the circuit is matched** #### Effect of $R_D$ mismatch If the load of $Q_1$ is $R_D$, $Q_2$ is $R_D+\Delta R_D$, then $v_{o1}\simeq-\frac{R_D}{2R_{SS}}v_{icm}$, $v_{o2}\simeq-\frac{R_D+\Delta R_D}{2R_{SS}}v_{icm}$ $v_{od}=v_{o2}-v_{o1}=-\frac{\Delta R_D}{2R_{SS}}v_{icm}\Rightarrow A_{cm}\equiv\frac{v_{od}}{v_{icm}}=-\frac{\Delta R_D}{2R_{SS}}$ (Or, $A_{cm}=-\left(\frac{R_D}{2R_{SS}}\right)\left(\frac{\Delta R_D}{R_D}\right)$) $\text{CMRR}\equiv\frac{|A_d|}{|A_{cm}|}=\frac{g_mR_D}{\Delta R_D/2R_{SS}}=\frac{2g_mR_{SS}}{\Delta R_D/R_D}$ #### Effect of $g_m$ mismatch in CMRR $A_{cm}\simeq\left(\frac{R_D}{2R_{SS}}\right)\left(\frac{\Delta g_m}{g_m}\right)\Rightarrow\text{CMRR}=\frac{2g_mR_{SS}}{\Delta g_m/g_m}$ #### Differential versus Singel-Ended Output $A_{cm}=-\frac{R_D}{2R_{SS}}$, $A_{d}=-\frac{1}{2}g_mR_D$ $\text{CMRR}=g_mR_{SS}$ (reduced$\Rightarrow$bad) ## 8.4 DC Offset ### 8.4.1 Input Offset Voltage of the MOS Differential Amplifier ![截圖 2025-01-06 下午4.29.55](https://hackmd.io/_uploads/SJcqNztUJl.png) :::warning ++Def++. **(Output DC offest voltage)**: the output voltage where $V_{G1}$ and $V_{G2}$ are grounded ($\neq 0 \because$ mismatch). ++Def++. **(Input DC offest voltage, $V_{OS}$)**: the magnitude of voltage when applied between two inputs, the dc offest voltage would be $0$. ::: #### $V_{OS}$ Due to $R_D$ Mismatch :::success ++Recall++. $I_D=\frac{k_n}{2}V_{OV}^2 \Rightarrow \Delta I_D=k_nV_{OV} \Delta V_{OV}=g_m\Delta V_{OV}$ (pretty obvious if you think about SS model) ::: Consider $R_{D1}=R_D+\frac{\Delta R_D}{2}$, $R_{D2}=R_D-\frac{\Delta R_D}{2}$. Apply $V_{OS}\Rightarrow I_{D1}=\frac{I}{2}-g_m\frac{V_{OS}}{2}$, $I_{D2}=\frac{I}{2}+g_m\frac{V_{OS}}{2}$ To make $V_O=0\Rightarrow (\frac{I}{2}-g_m\frac{V_{OS}}{2})(R_D+\frac{\Delta R_D}{2})=(\frac{I}{2}+g_m\frac{V_{OS}}{2})(R_D-\frac{\Delta R_D}{2})$ $\Rightarrow V_{OS}=\left(\frac{V_{OV}}{2}\right)\left(\frac{\Delta R_D}{R_D}\right)$ #### $V_{OS}$ Due to $k_n$ Mismatch Consider $k_{n1}=k_n+\frac{1}{2}\Delta k_n$, $k_{n2}=k_n-\frac{1}{2}\Delta k_n$. When inputs are grounded, $I_{D1}=\frac{I}{2}\left(1+\frac{1}{2}\frac{\Delta k_n}{k_n}\right)$, $I_{D2}=\frac{I}{2}\left(1-\frac{1}{2}\frac{\Delta k_n}{k_n}\right)$ Apply $V_{OS}$ to vanish "$\frac{1}{2}\frac{\Delta k_n}{k_n}$" $\Rightarrow g_m\frac{V_{OS}}{2}=\frac{I}{2}\times\frac{1}{2}\frac{\Delta k_n}{k_n}$ $\Rightarrow V_{OS}=\left(\frac{I/2}{g_m}\right)\left(\frac{\Delta k_n}{k_n}\right)=\left(\frac{V_{OV}}{2}\right)\left(\frac{\Delta k_n}{k_n}\right)$ #### $V_{OS}$ Due to $V_t$ Mismatch Consider $V_{t1}=V_t+\frac{\Delta V_t}{2}$, $V_{t2}=V_t-\frac{\Delta V_t}{2}$. $\Rightarrow I_{D1}=\frac{k_n}{2}\left(V_{OV}-\frac{\Delta V_t}{2}\right)^2\simeq \frac{k_n}{2}\left(V_{OV}^2-V_{OV}\Delta V_t\right)=\frac{I}{2}\left(1-\frac{\Delta V_t}{V_{OV}}\right)$ Apply $V_{OS}$ to vanish "$\frac{\Delta V_t}{V_{OV}}$" $\Rightarrow g_m\frac{V_{OS}}{2}=\frac{I}{2}\times\frac{\Delta V_t}{V_{OV}}$ $\Rightarrow V_{OS}=\Delta V_t$ (makes sense) :::info ++Note++. Combine these factors we get $V_{OS}=\sqrt{\left(\frac{V_{OV}}{2}\frac{\Delta R_D}{R_D}\right)^2+\left(\frac{V_{OV}}{2}\frac{\Delta k_n}{k_n}\right)^2+\left(\Delta V_t\right)^2}$ ::: ## 8.5 The Differential Amplifier with a Current-Mirror Load ### 8.5.1 Differential-to-Signal-Ended Conversion ![截圖 2025-01-06 下午5.22.33](https://hackmd.io/_uploads/HyyxZ7FIkl.png) :::info ++Note++. drawback: lose a factor of 2 in gain. ::: ### 8.5.2 The Current-Mirror-Loaded MOS Differential Pair ![截圖 2025-01-06 下午5.27.36](https://hackmd.io/_uploads/HJjNzXY8kl.png) **CM and differential SS analysis** ![截圖 2025-01-06 下午5.27.46](https://hackmd.io/_uploads/H1iEM7YIke.png) :::info ++Note++. Additional $i$ due to the current mirror compensate the lost of the gain. ::: ### 8.5.3 Differential Gain of the Current-Mirror-Loaded MOS Pair (Now we take $r_o$ into consideration) :::danger ++Caution++. The circuit is **NOT** symmetric, thus differential half-circuit can not be directly used. ::: **Converting to a simpler circuit** ![截圖 2025-01-06 下午5.49.11](https://hackmd.io/_uploads/HJRQDQF8yg.png) ($G_{md}$: the short-circuit transconductance for differential input) #### Derivation of the Differential Short-Circuit Transconductance, $G_{md}$ ![截圖 2025-01-06 下午6.00.01](https://hackmd.io/_uploads/HyPhFXF81l.png) ($G_{md}\equiv\frac{i_o}{v_{id}}$) :::info ++Observation++. When shorting the output, The circuit is nearly balanced as the resistance of $Q_4$ is ignored due to short-circuit, and $Q_3$ has small resistance. Therefore, the voltage at the source of $Q_{1,2}$ is nearly $0 \Rightarrow$ **virtual ground**. ::: $i_o=g_{m2}(\frac{v_{id}}{2})-g_{m4}v_{gs4}$ $v_{gs4}=v_{gs3}=-g_{m1}(\frac{v_{id}}{2})(\frac{1}{g_{m3}}\|r_{o3}\|r_{o1})\simeq -\frac{g_{m1}}{g_{m3}}(\frac{v_{id}}{2})$ if $\frac{1}{g_{m3}}\ll r_{o3}, r_{o1}$ Given that $g_{m3}=g_{m4}$, $g_{m1}=g_{m2}=g_m$, we have $\Rightarrow i_o=g_{m2}(\frac{v_{id}}{2})+g_{m4}\frac{g_{m1}}{g_{m3}}(\frac{v_{id}}{2})=g_mv_{id}$ $\Rightarrow G_{md}=g_m$ #### Derivation of the Output Resistance $R_o$ ![截圖 2025-01-06 下午6.15.31](https://hackmd.io/_uploads/rk9LpmF8Jg.png) ($R_o\equiv\frac{v_x}{i_x}$) :::success ++Recall++. For CG Amp, $R_o=r_o+R_S+g_mr_oR_S$, $R_{in}=\frac{r_o+R_L}{1+g_mr_o}$ ::: Load resistance for $Q_1$ (i.e, $Q_3$'s input resistance): $\frac{1}{g_{m3}}\|r_{o3}\simeq\frac{1}{g_{m3}}$ $\Rightarrow R_{in1}\simeq\frac{1}{g_{m1}}+\frac{1/g_{m3}}{g_{m1}r_{o1}}\simeq\frac{1}{g_{m1}}$ $\Rightarrow R_{o2} \simeq r_{o2}+\frac{1}{g_{m1}}+g_{m2}r_{o2}R_{in1}\simeq 2r_{o2}$ (for $g_{m1}=g_{m2}=g_m$) $\Rightarrow i_x=2i+\frac{v_x}{r_{o4}}=v_x(r_{o2}\|r_{o4})$ $\Rightarrow R_o=r_{o2}\|r_{o4}$ :::info ++Summary++. If $R_{od}$ is the output resistance of the differential pair and $R_{om}$ is the output resistance of the current-mirror, we get $G_{md}=g_{m1,2}$ $R_o=R_{od}\|R_{om}=r_{o2}\|r_{o4}$ $A_d\equiv\frac{v_{o}}{v_{id}}=G_{md}(R_{od}\|R_{om})=g_{m1,2}(r_{o2}\|r_{o4})$ For the case where $r_{o2}=r_{o4}=r_o$, $A_d=\frac{1}{2}g_mr_o=\frac{1}{2}A_0$ ::: ### 8.5.5 Common-Mode Gain and CMRR ![截圖 2025-01-06 晚上7.58.08](https://hackmd.io/_uploads/BkhuBrtI1l.png) #### Derivation of the Common-Mode Transconductance $G_{mcm}$ ![截圖 2025-01-06 晚上7.59.59](https://hackmd.io/_uploads/rJNABBKUyx.png) ($R_{im}=\frac{1}{g_{m3}}\|r_{o3}\simeq\frac{1}{g_{m3}}$, $R_{om}=r_{o4}$, $A_m=\frac{1}{1+\frac{1}{g_{m3}r_{o3}}}$) $i_1=g_{m1}(v_{icm}-v_s)+\frac{-i_1R_{im}-v_s}{r_{o1}}$ $i_2=g_{m2}(v_{icm}-v_s)-\frac{v_s}{r_{o2}}$ $v_s=R_{SS}(i_1+i_2)$ Define $D=1+\frac{1}{g_mr_o}+\left(\frac{R_{im}}{2r_o}\right)\left(1+\frac{1}{g_mr_o}+\frac{1}{g_mR_{SS}}\right)\simeq1+\epsilon+\frac{R_{im}}{2r_o}$ We have $i_1=\left(\frac{v_{icm}}{2R_{SS}}\right)\left(\frac{1}{D}\right)\simeq\left(\frac{v_{icm}}{2R_{SS}}\right)\left(1-\epsilon-\frac{R_{im}}{2r_o}\right)$ $i_2=\left(\frac{v_{icm}}{2R_{SS}}\right)\left(\frac{1+\frac{R_{im}}{r_o}}{D}\right)\simeq\left(\frac{v_{icm}}{2R_{SS}}\right)\left(1-\epsilon+\frac{R_{im}}{2r_o}\right)$ $\Rightarrow i_o=i_2+A_mi_1=\left(\frac{v_{icm}}{2R_{SS}}\right)\left[(A_m-1)(1-\epsilon)-\frac{R_{im}}{2r_o}(A_m+1)\right]$ $\Rightarrow G_{mcm}\equiv\frac{i_o}{v_{icm}}=\left(\frac{1}{2R_{SS}}\right)\left[(A_m-1)(1-\epsilon)-\frac{R_{im}}{2r_o}(A_m+1)\right]\simeq -\frac{1}{2R_{SS}}\frac{1}{g_{m3}(r_o\|r_{o3})}$ #### Common-Mode Gain $A_{cm}=G_{mcm}R_o=-\frac{1}{2R_{SS}}\frac{r_{o2}\|r_{o4}}{g_{m3}(r_o\|r_{o3})}=-\frac{1}{2g_{m3}R_{SS}}$ #### The Common-Mode Rejection Ratio $\text{CMRR}=(2g_{m1,2}R_{SS})[g_{m3}(r_o\|r_{o3})]=(2g_{m1,2}R_{SS})[g_{m3}(R_{od}\|R_{om})]$ ## 8.6 Multistage Amplifiers ### 8.6.1 A Two-Stage CMOS Op Amp ![截圖 2025-01-06 晚上8.54.47](https://hackmd.io/_uploads/BJ7nfUtUyx.png) (Functions of $C_C$ will be discussed in Chapter 12) #### Voltage Gain $A_1=-g_{m1}(r_{o2}\|r_{o4})$, $A_2=-g_{m6}(r_{o6}\|r_{o7})$ $\Rightarrow A_d=A_1A_2=g_{m1}g_{m6}(r_{o2}\|r_{o4})(r_{o6}\|r_{o7})$ #### Input Offset Voltage :::info ++Note++. **Random offset** stems from device mismatch and is inevitable, while **systematic offset** can be minimized by careful design. ::: To prevent systematic offset in the above circuit: $I_6=\frac{(W/L)_6}{(W/L)_4}(I/2)$, $I_7=\frac{(W/L)_7}{(W/L)_5}I$ (If inputs are grounded) $\Rightarrow \frac{(W/L)_6}{(W/L)_4}=2\frac{(W/L)_7}{(W/L)_5}$ ## Summary - $g_m=\frac{I}{V_{OV}}$ and $r_o=\frac{V_A}{I/2}$ for each MOS in the differential pair. - The range of differential-mode operation: $-\sqrt{2}V_{OV}\leq v_{id}\leq\sqrt{2}V_{OV}$ - If small diffential input is applied ($v_{I1,2}=V_{CM}\pm v_{id}/2$), the current changes in $Q_{1,2}$ are $\pm g_mv_{id}/2$, the output voltage signal is thus $\pm g_m(R_D\|r_o)v_{id}/2$, and the differential gain $A_d=g_m(R_D\|r_o)$. - If a small common-mode input is applied ($v_{icm}$) - When the circuit is matched, voltage signals at both drain are $-v_{icm}\frac{R_D}{2R_{SS}}$. If the output is taken single-endedly, $|A_{cm}|=\frac{R_D}{2R_{SS}}$, and if the output is taken differentially, $|A_{cm}|=0$. - When the circuit is mismatched: - $\Delta R_D$ causes $|A_{cm}|=\left(\frac{R_D}{2R_{SS}}\right)\left(\frac{\Delta R_D}{R_D}\right)$. - $\Delta k_n$ causes $|A_{cm}|=\left(\frac{R_D}{2R_{SS}}\right)\left(\frac{\Delta k_n}{k_n}\right)$. - Input DC offset voltage due to mismatch: $V_{OS}=\sqrt{\left(\frac{V_{OV}}{2}\frac{\Delta R_D}{R_D}\right)^2+\left(\frac{V_{OV}}{2}\frac{\Delta k_n}{k_n}\right)^2+\left(\Delta V_t\right)^2}$ (If independent) - For current-mirror-loaded differential pairs: - $G_{md}=g_{m1,2}$. - $R_o=R_{od}\|R_{om}=r_{o2}\|r_{o4}$. - $A_d=g_{m1,2}(r_{o2}\|r_{o4})$ - $G_{mcm}\simeq -\frac{1}{2R_{SS}}\frac{1}{g_{m3}(r_o\|r_{o3})}$ - $A_{cm}=-\frac{1}{2g_{m3}R_{SS}}$ - For the CMOS two-stage amplifier: - $A_1=-g_{m1}(r_{o2}\|r_{o4})$ - $A_2=-g_{m6}(r_{o6}\|r_{o7})$ - $A_d=A_1A_2=g_{m1}g_{m6}(r_{o2}\|r_{o4})(r_{o6}\|r_{o7})$ ## Practices - 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 - 8.55, 8.60, 8.62 - 8.70, 8.71, 8.77 - 8.85, 8.86, 8.87, 8.91, 8.92 - 8.105, 8.110