# CH13. Filters and Oscillators :::info **Disclaimer** If you spot any error, please contact me via my email: bigbeeismusic@gmail.com ::: ## 13.1 Basic Filter Concepts ### 13.1.1 Filter Transmission ![截圖 2025-01-22 晚上10.09.07](https://hackmd.io/_uploads/ry5z2ORvyx.png) Transfer function: $T(s)\equiv\frac{V_o(s)}{V_i(s)}=|T(j\omega)e^{j\phi(\omega)}|$ Gain function (magnitude of transmission): $G(\omega)\equiv 20\log|T(j\omega)|, \text{dB}$ Attenuation function: $A(\omega)=-20\log|T(j\omega)|, \text{dB}$ $\Rightarrow|V_o(j\omega)|=|T(j\omega)||V_i(j\omega)|$ ### 13.1.2 Filter Types ![截圖 2025-01-22 晚上10.15.24](https://hackmd.io/_uploads/Sk1opdADJx.png) ### 13.1.3 Filter Specification ![截圖 2025-01-22 晚上10.17.22](https://hackmd.io/_uploads/SJ4-RO0wkl.png) 1. $\omega_p$: passband edge 2. $A_{\text{max}}$: maximum allowed variation in passband transmission ($0.05\sim3\text{dB}$) 3. $\omega_s$: stopband edge 4. $A_{\text{min}}$: minimum required stop attenuation ($20\sim100\text{dB}$) ### 13.1.4 Obtaining the Filter Transfer Function: Filter Approximation :::warning ++Def++. (**Filter approximation**): The process of obtaining a transfer function that meets given specifications. ::: ### 13.1.5 Obtaining the Filter Circuit: Filter Realization :::warning ++Def++. (**Filter realization**): The process of finding a circuit whose transfer function is equal to the given transfer function. ::: - Passive filters: filters that only use inductors, capacitors, and resistors. **(work well at high frequency, but poor low-frequency performance because of inductors)** - Active filters: - Inductorless filters: replacing each inductance in the LCR filter with a circuit composed of op amps, resistors, and a capacitor, and having an input impedance equal to $sL$ (simulate the inductance). - More on these later. ## 13.2 The Filter Transfer Function $T(s)=\frac{a_Ms^M+a_{M-1}s^{M-1}+\cdots+a_0}{s^N+b_{N-1}s^{N-1}+\cdots+b_0}=a_M\frac{(s-z_1)(s-z_2)\cdots(s-z_M)}{(s-p_1)(s-p_2)\cdots(s-p_N)}$ ### 13.2.1 The Filter Order $N$ (degree of the denominator, also equal to the number of transmission zeros if includes $s=\infty$ and $z_1$, $z_2$...$z_M$). ### 13.2.2 The Filter Poles :::success ++Recall++. For the amplifier to be stable, **all poles should be in the left half of the s plane** $\Rightarrow$ either lie on the negative real axis or occur in complex-conjugate pairs. ::: :::info ++Note++. To obtain highly selective (sharp) responses, the poles are usually complex-conjugate except for one real pole if the filter order $N$ is odd. ::: ### 13.2.3 The Filter Transmission Zeros high-pass $\Rightarrow s=0$ / low-pass $\Rightarrow s=\infty$ :::info ++Note++. Examples: $T(s)=\frac{a_4(s^2+\omega_{l1}^2)(s^2+\omega_{l2}^2)}{s^5+b_4s^4+b_3s^3+b_2s^2+b_1s+b_0}$ ![截圖 2025-01-22 晚上11.38.48](https://hackmd.io/_uploads/HJ0GZ5APyl.png) $T(s)=\frac{a_5s(s^2+\omega_{l1}^2)(s^2+\omega_{l2}^2)}{s^6+b_5s^5+b_4s^4+b_3s^3+b_2s^2+b_1s+b_0}$ ![截圖 2025-01-22 晚上11.40.01](https://hackmd.io/_uploads/S1Bvb9Avkl.png) ::: ### 13.2.4 All-Pole Filters $T(s)=\frac{a_0}{s^N+b_{N-1}s^{N-1}+\cdots+b_0}$ ![截圖 2025-01-22 晚上11.45.23](https://hackmd.io/_uploads/BJSsM90wJg.png) ### 13.2.5 Factoring $T(s)$ into the Product of First-Order and Second-Order Functions $T(s)=\frac{k_1}{s+p_1}\times\frac{k_2s}{s^2+b_{11}s+b_{01}}\times\frac{k_3(s^2+\omega_{l}^2)}{s^2+b_{12}s+b_{02}}\times\cdots$ ### 13.2.6 First-Order Filters $T(s)=\frac{a_1s+a_0}{s+\omega_0}$ :::info ++Observation++. one pole: $s=-\omega_0$ / one transmission zero $s=-\frac{a_0}{a_1}$ ::: ### 13.2.7 Second-Order Filter Functions $T(s)=\frac{a_2s^2+a_1s+a_0}{s^2+s(\frac{\omega_0}{Q})+\omega_0^2}$ :::info ++Observation++. two pole: $p_1, p_2=-\frac{\omega_0}{2Q}\pm j\omega_0\sqrt{1-\frac{1}{4Q^2}}$ ![截圖 2025-01-22 晚上11.55.04](https://hackmd.io/_uploads/H13JS5Cw1l.png) ($\omega_0$ is known as the **pole frequency**, $Q$ is called the **pole quality factor**.) ::: $a_0, a_1, a_2$ determine the type of the filter, for instance #### Low-Pass $T(s)=\frac{a_0}{s^2+s(\frac{\omega_0}{Q})+\omega_0^2}$ ![截圖 2025-01-23 凌晨12.08.46](https://hackmd.io/_uploads/ryrmucRw1g.png) #### Bandpass $T(s)=\frac{a_1s}{s^2+s(\frac{\omega_0}{Q})+\omega_0^2}$ ![截圖 2025-01-23 凌晨12.11.13](https://hackmd.io/_uploads/B16lK5Rvke.png) #### Notch $T(s)=a_2\frac{s^2+\omega_n^2}{s^2+s(\frac{\omega_0}{Q})+\omega_0^2}$ ![截圖 2025-01-23 凌晨12.13.41](https://hackmd.io/_uploads/S1arKqAvyl.png) :::info ++Note++. The figure shown above is the case where $\omega_n>\omega_0$ (**low-pass notch (LPN)**) ::: ## 13.3 Butterworth and Chebyshev Filters ### 13.3.1 The Butterworth Filter ![截圖 2025-01-23 凌晨12.29.37](https://hackmd.io/_uploads/Bk6Waq0wJl.png) $|T(j\omega)|=\frac{1}{\sqrt{1+\epsilon^2\left(\frac{\omega}{\omega_p}\right)^N}}\Rightarrow |T(j\omega_p)|=\frac{1}{\sqrt{1+\epsilon^2}}$ Maximum variation in passband transmission: $A_{\text{max}}=20\log\sqrt{1+\epsilon^2}$ (Or, $\epsilon=\sqrt{10^{A_{\text{max}}/10}-1}$) :::info ++Observation++. Magnitude response for Butterworth filters of various order ($\epsilon=1$) ![截圖 2025-01-23 凌晨12.46.07](https://hackmd.io/_uploads/Bk-1Wj0vke.png) We can determine the level of the filter according to the $A_{\text{min}}$. (Note that $A(\omega_s)=10\log[1+\epsilon^2(\omega_s/\omega_p)^{2N}]$) ::: **The poles of an $N$th-order Butterworth filter** ![截圖 2025-01-23 凌晨12.49.11](https://hackmd.io/_uploads/SJOoboRwyx.png) $\Rightarrow$ pole frequency $\omega_0=\omega_p(1/\epsilon)^{1/N}$ $\Rightarrow Q_k=1/\left[2\sin\left(\frac{2k-1}{N}\frac{\pi}{2}\right)\right], k=1,2,\dots\frac{N-1}{2}$ (or $\frac{N}{2}$) $\Rightarrow T(s)=\frac{K\omega_0^N}{(s+\omega_0)\prod_{k=1}^{(N-1)/2}\left(s^2+s\frac{\omega_0}{Q_k}+\omega_0^2\right)}$ (or $\frac{K\omega_0^N}{\prod_{k=1}^{N/2}\left(s^2+s\frac{\omega_0}{Q_k}+\omega_0^2\right)}$) ### 13.3.2 The Chebyshev Filter ![截圖 2025-01-23 凌晨1.02.52](https://hackmd.io/_uploads/S1m04o0wJg.png) $|T(j\omega)| = \begin{cases} \frac{1}{\sqrt{1+\epsilon^2\cos^2[N\cos^{-1}(\omega/\omega_p)]}}, \text{if }\omega\leq\omega_p\\ \frac{1}{\sqrt{1+\epsilon^2\cosh^2[N\cosh^{-1}(\omega/\omega_p)]}}, \text{if }\omega\geq\omega_p\\ \end{cases}\Rightarrow|T(j\omega_p)|=\frac{1}{\sqrt{1+\epsilon^2}}$ $\Rightarrow A_{\text{max}}=10\log(1+\epsilon^2)$ (Or, $\epsilon=\sqrt{10^{A_{\text{max}}/10}-1}$) :::info ++Observation++. We can determine the level of the filter according to the $A_{\text{min}}$. (Note that $A(\omega_s)=10\log[1+\epsilon^2\cosh^2(N\cosh^{-1}(\omega_s/\omega_p))]$) ::: $\Rightarrow p_k=-\omega_p\sin\left(\frac{2k-1}{N}\frac{\pi}{2}\right)\sinh\left(\frac{1}{N}\sinh^{-1}\frac{1}{\epsilon}\right)+j\omega_p\cos\left(\frac{2k-1}{N}\frac{\pi}{2}\right)\cosh\left(\frac{1}{N}\sinh^{-1}\frac{1}{\epsilon}\right)$ $\Rightarrow T(s)=\frac{K\omega_p^N}{\epsilon 2^{N-1}(s-p_1)(s-p_2)\cdots(s-p_N)}$ ## 13.4 Second-Order Passive Filters Based on the LCR Resonator ![截圖 2025-01-23 凌晨1.45.19](https://hackmd.io/_uploads/S1LRRs0vJg.png) ### 13.4.1 The Resonator Poles ![截圖 2025-01-23 凌晨1.46.10](https://hackmd.io/_uploads/BJ8eyn0wyg.png) $\Rightarrow\frac{V_o}{I}=\frac{1}{Y}=\frac{1}{(1/sL)+sC+(1/R)}=\frac{s/C}{s^2+s(1/CR)+(1/LC)}$ $\Rightarrow \omega_0=\frac{1}{\sqrt{LC}}$, $Q=\omega_0CR=R\sqrt{\frac{C}{L}}$ :::info ++Note++. Alternative method to obtain the resonator poles: ![截圖 2025-01-23 凌晨1.59.49](https://hackmd.io/_uploads/HJpQG30wJl.png) ::: ### 13.4.2 Realization of Transmission Zeros ![截圖 2025-01-23 凌晨2.02.30](https://hackmd.io/_uploads/HJsRzn0w1l.png) $T(s)=\frac{V_o(s)}{V_i(s)}=\frac{Z_2(s)}{Z_1(s)+Z_2(s)}=\frac{Y_1(s)}{Y_1(s)+Y_2(s)}$ ### 13.4.3 Realization of the Low-Pass Function ![截圖 2025-01-23 下午3.43.34](https://hackmd.io/_uploads/rkjNQdy_Jg.png) $T(s)=\frac{1/sL}{(1/sL)+sC+(1/R)}=\frac{1/LC}{s^2+s(1/CR)+(1/LC)}$ ### 13.4.4 Realization of the Bandpass Function ![截圖 2025-01-23 下午3.44.47](https://hackmd.io/_uploads/S1lK7d1O1x.png) $T(s)=\frac{1/R}{(1/sL)+sC+(1/R)}=\frac{s(1/CR)}{s^2+s(1/CR)+(1/LC)}$ ### 13.4.5 Realization of the Notch Functions ![截圖 2025-01-23 下午3.47.18](https://hackmd.io/_uploads/Syvz4dkOkx.png) $T(s)=a_2\frac{s^2+\omega_0^2}{s^2+s(\omega_0/Q)+\omega_0^2}=\frac{s^2+(1/LC)}{s^2+s(1/CR)+(1/LC)}$ :::info ++Note++. General notch filter: ![截圖 2025-01-23 下午3.52.32](https://hackmd.io/_uploads/BytdHO1O1e.png) $L_1C_1=1/\omega_n^2$ (create a transmission zero) $C_1+C_2=C$, $L_1||L_2=L$ $\Rightarrow$ as $s\to0$: ![截圖 2025-01-23 下午3.56.22](https://hackmd.io/_uploads/HJcEU_y_yl.png) $\Rightarrow$ as $s\to\infty$: ![截圖 2025-01-23 下午3.56.53](https://hackmd.io/_uploads/BJdULOJOyg.png) ::: ## 13.5 Second-Order Active Filters Based on Inductance Simulation ### 13.5.1 The Antoniou Inductance-Simulation Circuit ![截圖 2025-01-23 下午4.00.03](https://hackmd.io/_uploads/S1HzvukOyx.png) $\Rightarrow Z_{in}\equiv\frac{V_1}{I_1}=s\frac{C_4R_1R_3R_5}{R_2}\Rightarrow L=\frac{C_4R_1R_3R_5}{R_2}$ :::info ++Note++. Analysis & Derivation ![截圖 2025-01-23 下午4.02.56](https://hackmd.io/_uploads/HJfaDd1_1x.png) ::: ### 13.5.2 The Op Amp-RC Resonator ![截圖 2025-01-23 下午4.04.47](https://hackmd.io/_uploads/H1-Vduy_1l.png) ($L$ is the simulated inductance realized by the Antoniou circuit) $\Rightarrow\omega_0=1/\sqrt{LC_6}=1/\sqrt{C_4C_6R_1R_3R_5/R_2}$, $Q=\omega_0C_6R_6=R_6\sqrt{\frac{C_6}{C_4}\frac{R_2}{R_1R_3R_5}}$ :::info ++Note++. Usually we select $C_4=C_6=C$, $R_1=R_2=R_3=R_5=R$, and thus $\omega_0=1/CR$, $Q=R_6/R$ ::: ### 13.5.3 Realization of the Various Filter Types ![截圖 2025-01-23 下午4.10.07](https://hackmd.io/_uploads/Sy1dKu1_ye.png) :::info ++Note++. Implementation of buffer amp $K$: ![截圖 2025-01-23 下午4.13.22](https://hackmd.io/_uploads/HyXE5OkO1e.png) ::: **Low-pass filter** ![截圖 2025-01-23 下午4.14.34](https://hackmd.io/_uploads/HJodc_J_ke.png) **Band-pass filter** ![截圖 2025-01-23 下午4.16.47](https://hackmd.io/_uploads/rymZjdk_kl.png) **Notch filter** ![截圖 2025-01-23 下午4.19.33](https://hackmd.io/_uploads/S1dijOJOyx.png) ($C_{61}+C_{62}=C$, $R_{51}||R_{52}=R$) $\omega_n=\frac{1}{\sqrt{C_{61}C_4R_1R_3R_{51}/R_2}}$ ## 13.6 Second-Order Active Filters Based on the Two-Integrator Loop ### 13.6.1 Derivation of the Two-Integrator-Loop Biquad :::success ++Recall++. Integrator in time domain: $y(t)=\int_{-\infty}^t x(\tau)d\tau$, in s-domain: $Y(s)=\frac{X(s)}{s}\Rightarrow H(s)=\frac{1}{s}$. ::: Consider $\frac{V_{hp}}{V_i}=\frac{Ks^2}{s^2+s(\omega_0/Q)+\omega_0^2}\Rightarrow V_{hp}+\frac{1}{Q}\left(\frac{\omega_0}{s}V_{hp}\right)+\left(\frac{\omega_0^2}{s^2}V_{hp}\right)=KV_i$ ![截圖 2025-01-23 下午4.36.09](https://hackmd.io/_uploads/rk0h1YkO1x.png) :::info ++Observation++. The output of the first integrator: $T_{bp}(s)=\frac{(-\omega_0/s)V_{hp}}{V_i}=-\frac{K\omega_0s}{s^2+s(\omega_0/Q)+\omega_0^2}\Rightarrow$ **band-pass** The output of the second integrator: $T_{lp}(s)=\frac{(\omega_0^2/s^2)V_{hp}}{V_i}=\frac{K\omega_0^2}{s^2+s(\omega_0/Q)+\omega_0^2}\Rightarrow$ **low-pass** Notice that this circuit achieve HP, BP and LP functions simultaneously $\Rightarrow$ universal active filter. ::: ### 13.6.2 Circuit Implementation :::success ++Recall++. Operation amplifiers applications: - Inverting configuration: ![截圖 2025-01-23 下午4.53.45](https://hackmd.io/_uploads/Byy3QFkuJl.png) $G=\frac{v_O}{v_I}=\frac{-R_2/R_1}{1+(1+R_2/R_1)/A}\simeq-\frac{R_2}{R_1}$ - Weighted summer: ![截圖 2025-01-23 下午4.56.48](https://hackmd.io/_uploads/rymDVtkOJx.png) $v_O=v_1(\frac{R_a}{R_1})(\frac{R_c}{R_b})+v_2(\frac{R_a}{R_2})(\frac{R_c}{R_b})-v_3(\frac{R_c}{R_3})-v_4(\frac{R_c}{R_4})$ - Integrator: ![截圖 2025-01-23 下午5.03.51](https://hackmd.io/_uploads/BypZ8Fk_yg.png) $\frac{V_o}{V_i}=-\frac{1}{sCR}$ ::: **KHN biquad** ![截圖 2025-01-23 下午4.47.42](https://hackmd.io/_uploads/SyKvftkuJg.png) View $V_i$, $V_{bp}$ and $V_{lp}$ as input and using superposition, we have $V_{hp}=V_i\frac{R_3}{R_2+R_3}\left(1+\frac{R_f}{R_1}\right)+V_{bp}\frac{R_2}{R_2+R_3}\left(1+\frac{R_f}{R_1}\right)-V_{lp}\frac{R_f}{R_1}$ Since $V_{bp}\equiv-\frac{\omega_0}{s}V_{hp}$, $V_{lp}\equiv\frac{\omega_0^2}{s^2}V_{hp}$, $V_{hp}=V_i\frac{R_3}{R_2+R_3}\left(1+\frac{R_f}{R_1}\right)+\frac{R_2}{R_2+R_3}\left(1+\frac{R_f}{R_1}\right)\left(-\frac{\omega_0}{s}V_{hp}\right)-\frac{R_f}{R_1}\left(\frac{\omega_0^2}{s^2}V_{hp}\right)$ Comparing the equation with $V_{hp}+\frac{1}{Q}\left(\frac{\omega_0}{s}V_{hp}\right)+\left(\frac{\omega_0^2}{s^2}V_{hp}\right)=KV_i$, we have $\frac{R_f}{R_1}=1$, $\frac{R_3}{R_2}=2Q-1$, $K=2-\frac{1}{Q}$ :::info ++Note++. To implement notch filters, use and extra summer: ![截圖 2025-01-23 下午5.37.02](https://hackmd.io/_uploads/B1eRpFy_Jl.png) ::: ### 13.6.3 An Alternative Two-Integrator-Loop Biquad Circuit ![截圖 2025-01-23 下午5.23.43](https://hackmd.io/_uploads/B14h5Kyuke.png) **Tow Thomas biquad** - do summation of the current at the input of first integrator ![截圖 2025-01-23 下午5.24.58](https://hackmd.io/_uploads/ryV-iYyOyx.png) $\Rightarrow\omega_0=\frac{1}{CR}$ :::info ++Note++. To implement notch filters, instead of use an extra op amp as the summer, consider the Tow-Thomas biquad with feedforward: ![截圖 2025-01-23 下午5.32.20](https://hackmd.io/_uploads/rJ822tk_1l.png) $\frac{V_o}{V_i}=-\frac{s^2\left(\frac{C_1}{C}\right)+s\frac{1}{C}\left(\frac{1}{R_1}-\frac{r}{RR_3}\right)+\frac{1}{C^2RR_2}}{s^2+s\frac{1}{QCR}+\frac{1}{C^2R^2}}$ For example, $R_1=R_3=\infty$ yields $\frac{V_o}{V_i}=-\frac{s^2\left(\frac{C_1}{C}\right)+\frac{1}{C^2RR_2}}{s^2+s\frac{1}{QCR}+\frac{1}{C^2R^2}}$ ::: ## 13.7 Second-Order Active Filters Using a Single Op Amp ### 13.7.1 Bandpass Circuit ![截圖 2025-01-23 下午6.01.35](https://hackmd.io/_uploads/rJLcm5ydye.png) :::info ++Note++. Analysis & Derivation ![截圖 2025-01-23 下午6.19.10](https://hackmd.io/_uploads/B182v51_yx.png) ::: $\frac{V_o}{R_3}+sC_1\left(V_o+\frac{1}{C_2R_3}V_o\right)+\frac{1}{R_4}\left(V_i+\frac{1}{sC_2R_3}V_o\right)=0$ $\Rightarrow T(s)=-\frac{s\frac{1}{C_1R_4}}{s^2+s\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)+\frac{1}{C_1C_2R_3R_4}}$ Compare with $T(s)=\frac{sK(\omega_0/Q)}{s^2+s(\omega_0/Q)+\omega_0^2}$, we get $\omega_0=\frac{1}{\sqrt{C_1C_2R_3R_4}}$, $Q=\frac{1}{\sqrt{C_1C_2R_3R_4}}/\left[\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)\right]$, $K=-\frac{R_3}{R_4}\left(1+\frac{C_1}{C_2}\right)$ :::info ++Note++. Usually we select $C_1=C_2=C$, $R_3=R$, $R_4=R/m$ ($m=4Q^2$), and thus $\omega_0=2Q/CR$, $K=-2Q^2$ ::: ### 13.7.2 High-Pass Circuit ![截圖 2025-01-23 下午6.40.55](https://hackmd.io/_uploads/rkqR2qkdJe.png) :::info ++Note++. Analysis & Derivation ![截圖 2025-01-23 下午6.42.43](https://hackmd.io/_uploads/Hy8Hp5y_yl.png) ::: $\Rightarrow T(s)=\frac{s^2}{s^2+s\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)+\frac{1}{C_1C_2R_3R_4}}$ Compare with $T(s)=\frac{Ks^2}{s^2+s(\omega_0/Q)+\omega_0^2}$, we get $\omega_0=\frac{1}{\sqrt{C_1C_2R_3R_4}}$, $Q=\frac{1}{\sqrt{C_1C_2R_3R_4}}/\left[\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)\right]$, $K=1$ :::info ++Note++. Above two circuits are related to rach other through the **complementary transformation**, thus they have same poles. ::: ### 13.7.3 Low-Pass Circuit ![截圖 2025-01-23 下午6.47.50](https://hackmd.io/_uploads/r1sdR9Jdyl.png) $\Rightarrow T(s)=\frac{1/C_3C_4R_1R_2}{s^2+s\frac{1}{C_4}\left(\frac{1}{R_1}+\frac{1}{R_2}\right)+\frac{1}{C_3C_4R_1R_2}}$ Compare with $T(s)=\frac{K\omega_0^2}{s^2+s(\omega_0/Q)+\omega_0^2}$, we get $\omega_0=\frac{1}{\sqrt{C_3C_4R_1R_2}}$, $Q=\frac{1}{\sqrt{C_3C_4R_1R_2}}/\left[\frac{1}{C_4}\left(\frac{1}{R_1}+\frac{1}{R_2}\right)\right]$, $K=1$ :::info ++Note++. Usually we select $R_1=R_2=R$, $C_3=C$, $C_4=C/4Q^2$, and thus $\omega_0=2Q/CR$ ::: ## 13.8 Switched-Capacitor Filters ### 13.8.1 The Basic Principle ![截圖 2025-01-23 晚上11.02.16](https://hackmd.io/_uploads/HJ9fc0kOke.png) **Two-phase clock (nonoverlapping)** ![截圖 2025-01-23 晚上11.05.14](https://hackmd.io/_uploads/rkU6q01OJg.png) (Assume the the clock frequency $f_c=1/T_c$ is much higher than the frequency of the input signal $v_i$) During $\phi_1$: $q_{C1}=C_1v_i$ During $\phi_2$: $i_{\text{av}}=\frac{C_1v_i}{T_c}\Rightarrow R_{eq}\equiv\frac{v_i}{i_{\text{av}}}=\frac{T_c}{C_1}$ $\Rightarrow\text{Time constant}=C_2R_{eq}=T_c\frac{C_2}{C_1}$ ### 13.8.2 Switch-Capacitor Integrator **Noninverting** ![截圖 2025-01-23 晚上11.15.31](https://hackmd.io/_uploads/ByP7pCJOkg.png) **Inverting** ![截圖 2025-01-23 晚上11.16.03](https://hackmd.io/_uploads/H1wSp0yu1e.png) ### 13.8.3 Switched-Capacitor Biquad Filter ![截圖 2025-01-23 晚上11.22.57](https://hackmd.io/_uploads/SkQgkyedye.png) ((a): original version; (b) switch-capacitor version) $\Rightarrow\omega_0=\frac{1}{\sqrt{C_1C_2R_{3eq}R_{4eq}}}=\frac{1}{T_c}\sqrt{\frac{C_3}{C_2}\frac{C_4}{C_1}}$, $Q=\frac{R_{5eq}}{R_{4eq}}=\frac{T_c/C_5}{T_c/C_4}=\frac{C_4}{C_5}$ :::info ++Note++. Usually we select $C_1=C_2=C$, $\frac{T_c}{C_3}C_2=\frac{T_c}{C_4}C_1$, $C_5=\frac{C_4}{Q}$ (and thus $C_3=C_4=(\omega_0T_c)C$) $\Rightarrow\text{Center-frequency gain}=QK=\frac{R_{5eq}}{R_{6eq}}=\frac{C_6}{C_5}$ ::: ## 13.9 Basic Principles of Sinusoidal Oscillators ### 13.9.1 The Oscillator Feedback Loop ![截圖 2025-01-24 凌晨12.48.46](https://hackmd.io/_uploads/B1Qbmlld1x.png) (positive-feedback loop) $A_f(s)=\frac{A(s)}{1-A(s)\beta(s)}$, Loop gain $L(s)\equiv A(s)\beta(s)$ Characteristic equation: $1-L(s)=0$ ### 13.9.2 The Oscillaton Criterion :::warning ++Def++. (**Barkhausen criterion**): $L(j\omega_0)\equiv A(j\omega_0)\beta(j\omega_0)=1$ ::: :::info ++Note++. For the circuit to produce sustained oscillations at $\omega_0$, the characteristic equation must have roots at $s=\pm j\omega_0\Rightarrow 1-A(s)\beta(s)$ must have a factor of the form $s^2+\omega_0^2$. ::: ### 13.9.3 Analysis of Oscillator Circuits 1. Break the feedback loop to find $A(s)\beta(s)$. 2. Find $\omega_0$ (frequency where $\phi(\omega_0)=0$ of $360^\circ$). 3. Find the condition for the oscillations to start: $|A(j\omega_0)\beta(j\omega_0)|\geq 1$. #### An Alternative Analysis Approach Assume the the signal is oscillating with frequency $\omega_0\Rightarrow$ obtain the function of $s$ ($D(s)=0$) $\Rightarrow$ Substitute using $s=j\omega_0$ and solve. ### 13.9.4 Nonlinear Amplitude Control ![截圖 2025-01-24 凌晨2.45.22](https://hackmd.io/_uploads/HyaIAbeuyl.png) When the output signal is small: $R_f=R_2+R_3$ When the output signal is large: $D_1$ or $D_2$ will conduct $\Rightarrow R_f\searrow$ :::info ++Note++. Alternative approach using the limiter: ![截圖 2025-01-24 凌晨2.51.39](https://hackmd.io/_uploads/rydygGgdke.png) ($\frac{4}{\pi}$ is derived from the fourier series of the square wave, we assume that the RLC filter is very selective.) ::: ## 13.10 Op Amp-RC Oscillator Circuits ### 13.10.1 The Wien-Bridge Oscillator ![截圖 2025-01-24 下午2.27.28](https://hackmd.io/_uploads/Syj1m2luJx.png) $L(s)=\left(1+\frac{R_2}{R_1}\right)\frac{Z_p}{Z_p+Z_s}=\frac{1+R_2/R_1}{1+Z_sY_p}=\frac{1+R_2/R_1}{3+sCR+1/sCR}$ $\Rightarrow L(j\omega)=\frac{1+R_2/R_1}{3+j(\omega CR-1/\omega CR)}\Rightarrow\omega_0=\frac{1}{CR}$ $\Rightarrow$ oscillations will start when $\frac{R_2}{R_1}\geq 2$ **Wien-bridge oscillator with a limiter** ![截圖 2025-01-24 下午2.40.59](https://hackmd.io/_uploads/SkoG8hlOkg.png) :::info ++Observation++. The positive peak happens when $v_b$ exceeds $v_1$ ($\simeq\frac{1}{3}v_O$) and thus $D_2$ conducts, while the negative peak happens when $D_1$ conducts. Also, we neglect the current through the diode when the peak is just reached. ::: ($V_{D1}=V_{D2}=V_D$) $\hat{v}_{O+}=\left[\left(\frac{R_5}{R_6}\right)V_{SS}+\left(1+\frac{R_5}{R_6}\right)V_D\right]/\left(\frac{2}{3}-\frac{1}{3}\frac{R_5}{R_6}\right)$ $\hat{v}_{O-}=-\left[\left(\frac{R_4}{R_3}\right)V_{DD}+\left(1+\frac{R_4}{R_3}\right)V_D\right]/\left(\frac{2}{3}-\frac{1}{3}\frac{R_4}{R_3}\right)$ To obtain a symmetrical output, select $R_3=R_6$, $R_4=R_5$, $V_{SS}=V_{DD}$ :::info ++Note++. - $v_I$ will have less distortion than $v_O$. - The node at $v_I$ has a high-impedance (not desired). ::: **Wien-bridge oscillator with the resistance-variation mechanism** ![截圖 2025-01-24 下午3.07.55](https://hackmd.io/_uploads/HJnU2hxukg.png) :::info ++Note++. - Signal at $b$ has lower distortion than that in $a$. - However, node $b$ has high-impedance. ::: ### 13.10.2 The Phase-Shift Oscillator ![截圖 2025-01-24 下午3.16.41](https://hackmd.io/_uploads/SJJcA3eOye.png) :::info ++Observation++. The phase shift at the RC ladder network should be $180^{\circ}$ for the oscillation to happen. ::: **Phase-shift oscillator with a feedback limiter** ![截圖 2025-01-24 下午3.21.23](https://hackmd.io/_uploads/HkItyTe_Jx.png) $\Rightarrow A(j\omega)\beta(j\omega)=\frac{\omega^2C^2RR_f}{4+j(3\omega CR-1/\omega CR)}$ ### 13.10.3 The Quadrature Oscillator ![截圖 2025-01-24 下午3.35.59](https://hackmd.io/_uploads/HyClQag_ye.png) :::info ++Observation++. Equivalent circuit at the input of op amp 2 ![截圖 2025-01-24 下午3.37.24](https://hackmd.io/_uploads/SJESX6gdyl.png) $v=\frac{v_{O2}}{2}\Rightarrow i_{R_f}=-\frac{v}{R_f}$ Set $R_f=2R\Rightarrow v=\frac{1}{C}\int_0^t\frac{v_{O1}}{2R}dt$, $v_{O2}=\frac{1}{CR}\int_0^tv_{O1}dt$ ::: Neglect the limiter, we have $L(s)\equiv\frac{V_{o2}}{V_x}=-\frac{1}{s^2C^2R^2}=\frac{1}{\omega^2C^2R^2}\Rightarrow\omega_0=\frac{1}{CR}$ ### 13.10.4 The Active-Filter-Tuned Oscillator **Basic principle** ![截圖 2025-01-24 晚上10.12.52](https://hackmd.io/_uploads/HybQgX-Oke.png) **Implementation** ![截圖 2025-01-24 晚上10.15.52](https://hackmd.io/_uploads/rJM3xX-dJe.png) :::info ++Observation++. In this circuit, the $R_2$ and $C_4$ of the Antoniou inductance-simulation circuit are interchanged $\Rightarrow$ makes the output of the lower op amp twice as large as the voltage across the resonator. ::: ### 13.10.5 A Final Remark :::info ++Note++. The op amp-RC oscillator circuits usually operate in the range of $10\text{Hz}\sim1\text{MHz}$. For higher frequencies, it is common to use circuits employing transistors with LC-tuned circuits or crystals. ::: ## 13.11 LC and Crystal Oscillators ### 13.11.1 The Colpitts and Hartely Oscillators ![截圖 2025-01-24 晚上10.34.26](https://hackmd.io/_uploads/HJ7Mr7Wdkl.png) ((a): Colpitts; (b): Hartley) For the Colpitts oscillator, $\omega_0=1/\sqrt{L\left(\frac{C_1C_2}{C_1+C_2}\right)}$ For the Hartley oscillator, $\omega_0=1/\sqrt{(L_1+L_2)C}$ **More detail on the colpitts oscillator** ![截圖 2025-01-24 晚上10.59.15](https://hackmd.io/_uploads/HJDA9QZOkg.png) The voltage gain of the MOSFET: $A=g_mR\Rightarrow V_{ds}=AV_{sg}$ ($R$: effective resistance between D&S, including $r_o$ and a resistance due to the inductor loss) At $\omega=\omega_0$, we have $Z\to\infty$, $I=0$ $V_{sg}=sC_1V_{ds}\times\frac{1}{sC_2}=\frac{C_1}{C_2}V_{ds}\Rightarrow\beta=\frac{V_{sg}}{V_{ds}}=\frac{C_1}{C_2}$ $\Rightarrow A\beta=A\frac{C_1}{C_2}=(g_m R)\left(\frac{C_1}{C_2}\right)$ For oscillations to start: $(g_m R)\left(\frac{C_1}{C_2}\right)>1\Rightarrow g_mR>\frac{C_2}{C_1}$ (As for the Hartley oscillator, $g_mR>\frac{L_1}{L_2}$) :::info ++Note++. Alternative analysis method: consider node D at figure (b), $sC_2V_{gs}+g_mV_{gs}+\left(\frac{1}{R}+sC_1\right)(1+s^2LC_2)V_{gs}=0$ $\Rightarrow s^3LC_1C_2+s^2(LC_2/R)+s(C_1+C_2)+\left(g_m+\frac{1}{R}\right)=0$ $\Rightarrow\left(g_m+\frac{1}{R}-\frac{\omega^2LC_2}{R}\right)+j[\omega(C_1+C_2)-\omega^3LC_1C_2]=0$ Imaginary part: $\omega_0=1/\sqrt{L\left(\frac{C_1C_2}{C_1+C_2}\right)}$ Real part: $g_mR=C_2/C_1$ ::: ### 13.11.2 The Cross-Coupled LC Oscillator ![截圖 2025-01-24 晚上11.52.10](https://hackmd.io/_uploads/rJQSPEb_kx.png) ($\omega_0=1/\sqrt{LC}$, $R_p=\omega_0LQ$) **Signal equivalent circuit** ![截圖 2025-01-24 晚上11.54.56](https://hackmd.io/_uploads/SyZkdVWO1e.png) Gain of each stage: $A_1=A_2=-g_m(R_p||r_o)$ Sustain oscillation $\Rightarrow |A_1A_2|=[g_m(R_p||r_o)]^2=1\Rightarrow g_m(R_p||r_o)=1$ ### 13.11.3 Crystal Oscillators **Symbol and equivalent circuit** ![截圖 2025-01-25 凌晨12.04.50](https://hackmd.io/_uploads/rkXEc4Wuyg.png) (Large $L$, very small $C_s$ ($C_p\gg C_s$), very high $Q\Rightarrow r$ can be neglected) $Z(s)=1/\left[sC_p+\frac{1}{sL+1/sC_s}\right]=\frac{1}{sC_p}\frac{s^2+(1/LC_s)}{s^2+[(C_p+C_s)/LC_sC_p]}$ $\Rightarrow Z(j\omega)=-j\frac{1}{\omega C_p}\left(\frac{\omega^2-\omega_s^2}{\omega^2-\omega_p^2}\right)$ where $\omega_s=\frac{1}{\sqrt{LC_s}}$, $\omega_p=1/\sqrt{L\left(\frac{C_sC_p}{C_s+C_p}\right)}$ ![截圖 2025-01-25 凌晨12.12.22 1](https://hackmd.io/_uploads/SJCgnEWOkl.png) :::info ++Observation++. The crystal reactance is inductive within $\omega_s\sim\omega_p\Rightarrow$ can be use as an inductor of the Colpitts oscillator, and $\omega_0\simeq1/\sqrt{LC_s}=\omega_s$ ::: **Pierce oscillator** (based on the Colpitts oscillator with CMOS inverter, which will be discussed in Chapter 14) ![截圖 2025-01-25 凌晨12.16.40](https://hackmd.io/_uploads/Hyvg6EWOyx.png) ($R_1C_1$: low-pass filter) ## 13.12 Nonlinear Oscillators or Function Generators ### 13.12.1 The Bistable Feedback Loop ![截圖 2025-01-25 凌晨1.06.13](https://hackmd.io/_uploads/H1h5dSZ_Jg.png) ($\beta=\frac{R_1}{R_1+R_2}$) Two possible outcomes (stable states): - Positive saturation: $v_O=L_+$, $v_+=L_+\frac{R_1}{R_1+R_2}$ - Negative saturation: $v_O=L_-$, $v_+=L_-\frac{R_1}{R_1+R_2}$ :::info ++Note++. Although $v_O=v_+=0$ is theoretical feasible, it is unstable (i.e., it is in the metastable state). ::: ### 13.12.2 Transfer Characteristic of the Bistable Circuit ![截圖 2025-01-25 凌晨1.14.41](https://hackmd.io/_uploads/BJbfjrWdke.png) ![截圖 2025-01-25 凌晨1.17.27](https://hackmd.io/_uploads/Hy9NiBWdJe.png) ($V_{TH}=\beta L_+$, $V_{TL}=\beta L_-$) ### 13.12.3 Triggering the Bistable Circuit From $L_+$ to $L_-$: apply $v_I>V_{TH}$ From $L_-$ to $L_+$: apply $v_I<V_{TL}$ :::info ++Note++. $v_I$ only triggers regeneration and thus can be simply a pulse (or short-duration signal). Therefore, $v_I$ is referred to as a trigger signal (or simply a trigger). ::: ### 13.12.4 The Bistable Circuit as a Memory Element When $V_{TL}<v_I<V_{TH}$, $v_O$ is depended on. the previous value of the trigger signal $\Rightarrow$ **the circuit exhibits memory** :::info ++Note++. In analog-circuit applications, the bistable circuit is also known as a **Schmitt trigger**. ::: ### 13.12.5 A Bistable Circuit with Noninvertng Transfer Characteristic ![截圖 2025-01-25 凌晨1.26.41](https://hackmd.io/_uploads/r14uaSWOJe.png) (**Notice the +/- sign on the op amp**) $v_+=v_I\frac{R_2}{R_1+R_2}+v_O\frac{R_1}{R_1+R_2}\Rightarrow V_{TL}=-L_+\frac{R_1}{R_2}$, $V_{TH}=-L_-\frac{R_1}{R_2}$ ### 13.12.6 Generating Square Waveforms Using a Bistable Circuit **Basic Principle** ![截圖 2025-01-25 凌晨1.32.52](https://hackmd.io/_uploads/SJGkkI-d1x.png) **Circuit Implementation** ![截圖 2025-01-25 凌晨1.34.41](https://hackmd.io/_uploads/SyKr1UbO1e.png) **Waveforms** ![截圖 2025-01-25 凌晨1.35.36](https://hackmd.io/_uploads/B1AdJLbd1g.png) ($\tau=CR$) (When rising to $L_+$) $v_-=L_+-(L_+-\beta L_-)e^{-t/\tau}$ $v_-(T_1)=\beta L_+\Rightarrow T_1=\tau\ln\frac{1-\beta(L_-/L_+)}{1-\beta}$ (When falling to $L_-$) $v_-=L_--(L_--\beta L_+)e^{-t/\tau}$ $v_-(T_2)=\beta L_-\Rightarrow T_2=\tau\ln\frac{1-\beta(L_+/L_-)}{1-\beta}$ Given that $L_+=-L_-$, the wave period is $T=T_1+T_2=2\tau\ln\frac{1+\beta}{1-\beta}$ ### 13.12.7 Generating Triangular Waveforms ![截圖 2025-01-25 凌晨1.45.02](https://hackmd.io/_uploads/ByhhZLbuJl.png) (Note that we use noninverting type bistable circuit, replace low-pass filter with an integrator) **Waveforms** ![截圖 2025-01-25 凌晨1.48.51](https://hackmd.io/_uploads/S189zUZdyg.png) $\frac{V_{TH}-V_{TL}}{T_1}=\frac{L_+}{CR}\Rightarrow T_1=CR\frac{V_{TH}-V_{TL}}{L_+}$ $\frac{V_{TH}-V_{TL}}{T_2}=\frac{-L_-}{CR}\Rightarrow T_2=CR\frac{V_{TH}-V_{TL}}{-L_-}$ ## Summary **Filters** - The characteristics of a filter: - $\omega_p$: passband edge. - $A_{\text{max}}$: maximum allowed variation in passband transmission ($0.05\sim3\text{dB}$). - $\omega_s$: stopband edge. - $A_{\text{min}}$: minimum required stop attenuation ($20\sim100\text{dB}$). - To obtain highly selective (sharp) responses, the poles are usually complex-conjugate except for one real pole if the filter order $N$ is odd. - For Butterworth filters, - $|T(j\omega)|=\frac{1}{\sqrt{1+\epsilon^2\left(\frac{\omega}{\omega_p}\right)^N}}\Rightarrow |T(j\omega_p)|=\frac{1}{\sqrt{1+\epsilon^2}}$. - $A_{\text{max}}=20\log\sqrt{1+\epsilon^2}$. - $A(\omega_s)=10\log[1+\epsilon^2(\omega_s/\omega_p)^{2N}]$. - $\omega_0=\omega_p(1/\epsilon)^{1/N}$. - $Q_k=1/\left[2\sin\left(\frac{2k-1}{N}\frac{\pi}{2}\right)\right], k=1,2,\dots\frac{N-1}{2}$ (or $\frac{N}{2}$). - $T(s)=\frac{K\omega_0^N}{(s+\omega_0)\prod_{k=1}^{(N-1)/2}\left(s^2+s\frac{\omega_0}{Q_k}+\omega_0^2\right)}$ (or $\frac{K\omega_0^N}{\prod_{k=1}^{N/2}\left(s^2+s\frac{\omega_0}{Q_k}+\omega_0^2\right)}$). - For Chebyshev Filters, - $|T(j\omega)| = \begin{cases} \frac{1}{\sqrt{1+\epsilon^2\cos^2[N\cos^{-1}(\omega/\omega_p)]}}, \text{if }\omega\leq\omega_p\\ \frac{1}{\sqrt{1+\epsilon^2\cosh^2[N\cosh^{-1}(\omega/\omega_p)]}}, \text{if }\omega\geq\omega_p\\ \end{cases}\Rightarrow|T(j\omega_p)|=\frac{1}{\sqrt{1+\epsilon^2}}$. - $A_{\text{max}}=10\log(1+\epsilon^2)$. - $A(\omega_s)=10\log[1+\epsilon^2\cosh^2(N\cosh^{-1}(\omega_s/\omega_p))]$. - $p_k=-\omega_p\sin\left(\frac{2k-1}{N}\frac{\pi}{2}\right)\sinh\left(\frac{1}{N}\sinh^{-1}\frac{1}{\epsilon}\right)+j\omega_p\cos\left(\frac{2k-1}{N}\frac{\pi}{2}\right)\cosh\left(\frac{1}{N}\sinh^{-1}\frac{1}{\epsilon}\right)$. - $T(s)=\frac{K\omega_p^N}{\epsilon 2^{N-1}(s-p_1)(s-p_2)\cdots(s-p_N)}$. - For second-order passive filters, $\omega_0=\frac{1}{\sqrt{LC}}$, $Q=\omega_0CR=R\sqrt{\frac{C}{L}}$. - Replacing the inductor in the second-order passive filter with the **simulated inductance using the Antoniou circuit** ($L=\frac{C_4R_1R_3R_5}{R_2}$), we obtain an op amp-RC resonator. - $\omega_0=\frac{1}{\sqrt{C_4C_6R_1R_3R_5/R_2}}=\frac{1}{CR}$. - $Q=\omega_0C_6R_6=R_6\sqrt{\frac{C_6}{C_4}\frac{R_2}{R_1R_3R_5}}=\frac{R_6}{R}$. - For KHN biquads, - $T_{hp}(s)=\frac{Ks^2}{s^2+s(\omega_0/Q)+\omega_0^2}$, $T_{bp}(s)=\frac{(-\omega_0/s)V_{hp}}{V_i}=-\frac{K\omega_0s}{s^2+s(\omega_0/Q)+\omega_0^2}$, $T_{lp}(s)=\frac{(\omega_0^2/s^2)V_{hp}}{V_i}=\frac{K\omega_0^2}{s^2+s(\omega_0/Q)+\omega_0^2}$. - $\frac{R_f}{R_1}=1$, $\frac{R_3}{R_2}=2Q-1$, $K=2-\frac{1}{Q}$. - To implement notch filters, use and extra summer. - For Tow Thomas biquads, - We do summation of the current at the input of first integrator, therefore $V_{hp}$ can't be obtained directly. - To implement notch filters, instead of use an extra op amp as the summer, consider the Tow-Thomas biquad with feedforward: $\frac{V_o}{V_i}=-\frac{s^2\left(\frac{C_1}{C}\right)+s\frac{1}{C}\left(\frac{1}{R_1}-\frac{r}{RR_3}\right)+\frac{1}{C^2RR_2}}{s^2+s\frac{1}{QCR}+\frac{1}{C^2R^2}}$. - For single op amp bandpass circuits, - $T(s)=-\frac{s\frac{1}{C_1R_4}}{s^2+s\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)+\frac{1}{C_1C_2R_3R_4}}$. - $\omega_0=\frac{1}{\sqrt{C_1C_2R_3R_4}}$, $Q=\frac{1}{\sqrt{C_1C_2R_3R_4}}/\left[\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)\right]$, $K=-\frac{R_3}{R_4}\left(1+\frac{C_1}{C_2}\right)$. - For single op amp high-pass circuits, - $T(s)=\frac{s^2}{s^2+s\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)+\frac{1}{C_1C_2R_3R_4}}$. - $\omega_0=\frac{1}{\sqrt{C_1C_2R_3R_4}}$, $Q=\frac{1}{\sqrt{C_1C_2R_3R_4}}/\left[\frac{1}{R_3}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)\right]$, $K=1$. - For single op amp low-pass circuits, - $T(s)=\frac{1/C_3C_4R_1R_2}{s^2+s\frac{1}{C_4}\left(\frac{1}{R_1}+\frac{1}{R_2}\right)+\frac{1}{C_3C_4R_1R_2}}$. - $\omega_0=\frac{1}{\sqrt{C_3C_4R_1R_2}}$, $Q=\frac{1}{\sqrt{C_3C_4R_1R_2}}/\left[\frac{1}{C_4}\left(\frac{1}{R_1}+\frac{1}{R_2}\right)\right]$, $K=1$. - In the switched-capacitor circuit, we use switches (periodically switch between two nodes is frequency $f_c$) and capacitors to simulate resistors ($R_{eq}=\frac{T_c}{C}=\frac{1}{Cf_c}$). - For switched-capacitor biquads, - $\omega_0=\frac{1}{\sqrt{C_1C_2R_{3eq}R_{4eq}}}=\frac{1}{T_c}\sqrt{\frac{C_3}{C_2}\frac{C_4}{C_1}}$, $Q=\frac{R_{5eq}}{R_{4eq}}=\frac{C_4}{C_5}$. - $\text{Center-frequency gain}=QK=\frac{R_{5eq}}{R_{6eq}}=\frac{C_6}{C_5}$. **Oscillators** - Analysis of oscillator circuits: - Break the feedback loop to find $A(s)\beta(s)$. - Find $\omega_0$ (frequency where $\phi(\omega_0)=0$ of $360^\circ$). - Find the condition for the oscillations to start: $|A(j\omega_0)\beta(j\omega_0)|\geq 1$. - Nonlinear amplitude-control mechanism: activates when the loop gain is greater than unity. - For Wein-Bridge oscillators, - $L(j\omega)=\frac{1+R_2/R_1}{3+j(\omega CR-1/\omega CR)}$. - $\omega_0=\frac{1}{CR}$. - oscillations will start when $\frac{R_2}{R_1}\geq 2$. - with the limiter added: - $\hat{v}_{O+}=\left[\left(\frac{R_5}{R_6}\right)V_{SS}+\left(1+\frac{R_5}{R_6}\right)V_D\right]/\left(\frac{2}{3}-\frac{1}{3}\frac{R_5}{R_6}\right)$ - $\hat{v}_{O-}=-\left[\left(\frac{R_4}{R_3}\right)V_{DD}+\left(1+\frac{R_4}{R_3}\right)V_D\right]/\left(\frac{2}{3}-\frac{1}{3}\frac{R_4}{R_3}\right)$ - For phase-shift oscillators, - at least 3 level of RC ladder is needed. - $A(j\omega)\beta(j\omega)=\frac{\omega^2C^2RR_f}{4+j(3\omega CR-1/\omega CR)}$. - For quadrature oscillators, - two integrators in series are used, and a resistor $R_f=2R$ is used to present a negative effective resistance $-R_f$. - $L(s)=-\frac{1}{s^2C^2R^2}=\frac{1}{\omega^2C^2R^2}$. - $\omega_0=\frac{1}{CR}$. - For Colpitts oscillators, - $\omega_0=1/\sqrt{L\left(\frac{C_1C_2}{C_1+C_2}\right)}$. - $A\beta=A\frac{C_1}{C_2}=(g_m R)\left(\frac{C_1}{C_2}\right)$. - oscillations will start when $g_mR>\frac{C_2}{C_1}$. - For Hartley oscillators, - $\omega_0=\frac{1}{\sqrt{(L_1+L_2)C}}$. - $A\beta=A\frac{L_2}{L_1}=(g_m R)\left(\frac{L_2}{L_1}\right)$. - oscillations will start when $g_mR>\frac{L_1}{L_2}$. - For cross-coupled LC oscillators, - $\omega_0=\frac{1}{\sqrt{LC}}$. - $A_1=A_2=-g_m(R_p||r_o)$ - oscillations will start when $g_m(R_p||r_o)\geq 1$. - Properies of piezoelectric crystal: - $Z(s)=1/\left[sC_p+\frac{1}{sL+1/sC_s}\right]=\frac{1}{sC_p}\frac{s^2+(1/LC_s)}{s^2+[(C_p+C_s)/LC_sC_p]}$. - $Z(j\omega)=-j\frac{1}{\omega C_p}\left(\frac{\omega^2-\omega_s^2}{\omega^2-\omega_p^2}\right)$, $\omega_s=\frac{1}{\sqrt{LC_s}}$, $\omega_p=1/\sqrt{L\left(\frac{C_sC_p}{C_s+C_p}\right)}$. - In the inverting bistable circuit, $V_{TL}=\beta L_-$, $V_{TH}=\beta L_+$. In the noninverting bistable circuit, $V_{TL}=-L_+\frac{R_1}{R_2}$, $V_{TH}=-L_-\frac{R_1}{R_2}$. ## Practice - 13.1, 13.2 - 13.10, 13.11, 13.12, 13.13, 13.14 - 13.32, 13.33 - 13.43, 13.44, 13.45 - 13.52, 13.54, 13.55 - 13.62, 13.63, 13.64 - 13.68, 13.69 - 13.73, 13.74 - 13.78, 13.81 - 13.90, 13.91, 13.92 - 13.108, 13.109 - 13.114, 13.115, 13.117