* Webframe Mockup: https://drive.google.com/file/d/1TmVBAXX8F6PcUHAXFr5p6IpCMJmvZAye/view?usp=sharing
* API規格
```py=
#QADesign.py
def QADesign(sourceDataset):
#sourceDataset為檔案路徑
...
return QAJsonl
```
```py=
#fineTuneModel.py
def fineTuneModelCreate(training_file, validation_file, model=davinci , n_epochs=4, batch_size, learning_rate_multiplier):
#training_file為CSV檔路徑
#validation_file為CSV檔路徑
#model預設為davinci,除非user有異動
#n_epochs預設為4,除非user有異動
#batch_size需計算,通常為訓練資料集的0.2%左右
#learning_rate_multiplier通常是0.05, 0.1, or 0.2,官方建議從0.02~0.2找最佳解
...
return {"fine-tuning job_id": fine-tuning job_id,
"status": status
}
def checkModelStatus(fineTuningJobId):
...
return {"fine-tuning job_id": fine-tuning job_id,
"elapsed_tokens": elapsed_tokens,
"elapsed_examples": elapsed_examples,
"training_loss": training_loss,
"training_sequence_accuracy": training_sequence_accuracy,
"training_token_accuracy": training_token_accuracy
}
```
```py=
#benchmark.py
def benchmark(contextInjection, inputData, finetunedModelId):
#contextInjection為檔案路徑
#inputData為檔案路徑
#finetunedModelId為訓練完的模型id,user填入
return ???
```