* Webframe Mockup: https://drive.google.com/file/d/1TmVBAXX8F6PcUHAXFr5p6IpCMJmvZAye/view?usp=sharing * API規格 ```py= #QADesign.py def QADesign(sourceDataset): #sourceDataset為檔案路徑 ... return QAJsonl ``` ```py= #fineTuneModel.py def fineTuneModelCreate(training_file, validation_file, model=davinci , n_epochs=4, batch_size, learning_rate_multiplier): #training_file為CSV檔路徑 #validation_file為CSV檔路徑 #model預設為davinci,除非user有異動 #n_epochs預設為4,除非user有異動 #batch_size需計算,通常為訓練資料集的0.2%左右 #learning_rate_multiplier通常是0.05, 0.1, or 0.2,官方建議從0.02~0.2找最佳解 ... return {"fine-tuning job_id": fine-tuning job_id, "status": status } def checkModelStatus(fineTuningJobId): ... return {"fine-tuning job_id": fine-tuning job_id, "elapsed_tokens": elapsed_tokens, "elapsed_examples": elapsed_examples, "training_loss": training_loss, "training_sequence_accuracy": training_sequence_accuracy, "training_token_accuracy": training_token_accuracy } ``` ```py= #benchmark.py def benchmark(contextInjection, inputData, finetunedModelId): #contextInjection為檔案路徑 #inputData為檔案路徑 #finetunedModelId為訓練完的模型id,user填入 return ??? ```